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The XX -model with boundaries: Part I. Diagonalization of
the finite chain
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Universiẗat Bonn, Physikalisches Institut, Nußallee 12, D-53115 Bonn, Germany

Received 14 July 1998

Abstract. This is the first of three papers dealing with theXX finite quantum chain with arbitrary,
not necessarily Hermitian, boundary terms. This extends previous work where the periodic or
diagonal boundary terms were considered. In order to find the spectrum and wavefunctions, an
auxiliary quantum chain is examined which is quadratic in fermionic creation and annihilation
operators and hence diagonalizable. The secular equation is, in general, complicated but several
cases were found when it can be solved analytically. For these cases the ground-state energies
are given. The appearance of boundary states is also discussed and in view of the applications
considered in the next papers, the one- and two-point functions are expressed in terms of Pfaffians.

1. Introduction

In this paper, we consider theXX-chain with diagonal and non-diagonal boundary terms:

H = 1

2

L−1∑
j=1

[σ +
j σ
−
j+1 + σ−j σ

+
j+1] +

1√
8

[α−σ−1 + α+σ
+
1 + αzσ

z
1 + β+σ

+
L + β−σ−L + βzσ

z
L].

(1.1)

Here,σ± are defined byσ± = 1
2(σ

x ± iσy), whereσx, σ y andσ z are the Pauli matrices. The
factor 1/

√
8 has been introduced for later convenience. Since the parametersα±, β±, αz and

βz are arbitrary complex numbers, the Hamiltonian defined by equation (1.1) is non-Hermitian
in the general case.

Let us now give a brief overview of the literature before turning to the concrete results
we obtained by studying diagonal and non-diagonal boundary conditions. All the articles
mentioned in this overview are based on the free-fermion approach to theXX-model.

TheXX-model often appears as a special case of theXY -model. TheXY -model was
introduced 1961 by Liebet al [1] who computed its ground-state energy, the elementary
excitations and also presented a method to calculate time-independent correlation functions.
In this way, they treated periodic boundary conditions as well as free ends.

During the last 30 years, the correlation functions of theXY -model and therewith
the XX-model have been the subject of various investigations. McCoy [2] studied the
correlation functions of theXY -model with periodic boundary conditions. More precisely, he
computed the asymptotic behaviour of each of the three time-independent correlation functions
〈σ i0σ iR〉 with i = x, y, z in the limit R → ∞. Barouch and McCoy [3] determined the
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asymptotic behaviour of the same correlation functions for theXY -model with an external
time-independent magnetic field in thez-direction. In another article, time-dependent spin–
spin correlation functions of the form〈σx0 (t)σ xR(0)〉 and〈σy0 (t)σ yR(0)〉 for theXY -model in
an external magnetic field again in thez-direction were calculated in the limit of largeR by
McCoyet al [4]. Exact expressions for these correlation functions for all values ofR andt were
then computed by Vaidya and Tracy [5]. Furthermore, time-dependent many-spin correlation
functions for theXY -model in an external constant magnetic field in thez-direction were
treated by Bariev [6].

Recently, theXY -model with boundary terms has been the subject of increasing interest.
Hinrichsen and Rittenberg [7] showed that the anisotropicXY -model in an external magnetic
field with σ z-boundary terms is invariant under certain quantum group transformations.
Furthermore, they defined and calculated the corresponding invariant correlation functions.

The XX-model with non-diagonal boundary terms, however, has not been studied
thoroughly before. Some work in this direction has been presented by Guinea [8] who studied
the semi-infiniteXY -model with oneσx-boundary term (i.e.α− = α+ = 1, β+ = β− =
αz = βz = 0). We will mention more details of that paper when discussing the physical
applications of the HamiltonianH of equation (1.1). Furthermore, a study of the totally
asymmetricXX-model with bulk terms of the formσ +

j σ
−
j+1 and with boundary parameters

given byα− 6= 0, β+ 6= 0, α+ = β− = αz = βz = 0 in the notation of equation (1.1) can be
found in our previous paper [9].

As already mentioned, in the general case the Hamiltonian given by equation (1.1) is
non-Hermitian. Interesting physical problems involving non-Hermitian Hamiltonians can be
found in several articles treating non-Hermitian quantum mechanics [10].

The Hamiltonian given by equation (1.1) can also be used in the study of asymmetric bulk
terms. More precisely, starting from a Hamiltonian of the form

H̃ =
L−1∑
j=1

[pσ +
j σ
−
j+1 + qσ−j σ

+
j+1] +

1√
8

[α′−σ
−
1 + α′+σ

+
1 + αzσ

z
1 + β ′+σ

+
L + β ′−σ

−
L + βzσ

z
L]

(1.2)

one can use a similarity transformation (see, for example, [11]) that transforms the asymmetric
bulk terms depending on the two parametersp andq of the Hamiltonian given by equation
(1.2) into symmetric bulk terms. It is convenient to choose

√
pq = 1

2. Note that the
similarity transformation changes the boundary terms. The corresponding transformed
boundary parametersα−, α+, β+ andβ− of the Hamiltonian given by equation (1.1) are now
L-dependent and have the expressions

α− = Q(1−L)/2α′− α+ = Q(L−1)/2α′+
β+ = Q(1−L)/2β ′+ β− = Q(L−1)/2β ′− (1.3)

with Q = √q/p. The diagonal boundary terms remain unchanged.
Although the Hamiltonian of theXYZ-chain with non-diagonal boundary terms is known

to be integrable [12, 13], Bethe ansatz equations have not yet been obtained, because it is not
clear how to construct a reference state. Therefore, to study the effect of non-diagonal boundary
terms, we chose theXX-model with boundaries of the form given by equation (1.1), because
this model can be fermionized. To be able to use the free-fermion approach, we introduce a new
HamiltonianHlong which is bilinear in terms of fermionic creation and annihilation operators.
This approach has the major advantage that we have complete control over the wavefunctions
for a large class of boundary parameters which enables us to calculate correlation functions.
Thus, we get a good handle on a particularly interesting and important integrable model.
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As mentioned above, in order to treat the Hamiltonian given by equation (1.1) we transfer
the diagonalization problem to a new Hamiltonian which we obtain by appending one additional
site at each end of the chain as in [14]. This new Hamiltonian has the following expression:

Hlong = 1

2

L−1∑
j=1

[σ +
j σ
−
j+1 + σ−j σ

+
j+1] +

1√
8

[α−σx0 σ
−
1 + α+σ

x
0 σ

+
1 + αzσ

z
1

+β+σ
+
Lσ

x
L+1 + β−σ−L σ

x
L+1 + βzσ

z
L]. (1.4)

In this way, the boundary terms are also bilinear expressions in theσ + andσ− matrices. It
is only after this transformation that we can write and solve the problem in terms of free
fermions. Sinceσx0 andσxL+1 commute withHlong, the spectrum ofHlong decomposes into four
sectors(++,+−,−+,−−) corresponding to the eigenvalues±1 of σx0 andσxL+1. The original
Hamiltonian corresponds to the (++)-sector. A substantial part of this paper is devoted to
showing how the eigenvalues ofH are obtained by projecting onto this sector.

The HamiltonianHlong which we introduced only as a means to treat the HamiltonianH

is actually interesting in its own right as a quantum spin chain with boundary terms.
In the field-theoretic approach the HamiltonianHlong is probably related to the decoupling

point of the boundary sine–Gordon model. The corresponding boundaryS-matrix has been
calculated in [15, 16].

It is very likely that the HamiltonianH given by equation (1.1) can be applied to physical
problems, since a simpler version of this Hamiltonian has already found such applications.
Namely, the semi-infiniteXX-chain with oneσx-boundary term mentioned before was studied
by Guinea [8] as a model for the dynamics of a particle in an external potential coupled to
a dissipative environment. He also utilized free fermions and presented an explicit solution
for the mobility of the particle in the continuum limit. Afterwards this solution was used in
the study of transmission through resonant barriers and resonant tunnelling in an interacting
one-dimensional electron gas, cf Kane and Fisher [17]. This type of system is studied in
experiments with quantum wires. The calculation is built on a perturbative renormalization
group analysis in different limits (limits of a weak barrier and a strong barrier). By combining
the results of these two limits the authors obtain the full phase diagram of the model. For
one particular value of the dimensionless conductance, they even obtain an exact solution for
the conductance through a resonance by mapping the model onto the semi-infiniteXX-model
with oneσx-boundary term.

The starting point for our investigations of theXX-chain with non-diagonal boundary
terms is the diagonalization of the HamiltonianH (equation (1.1)). This problem is not only
of mathematical interest, since the model has an interesting physical content. Namely, as
will be shown, boundary bound states appear and the non-trivial ground-state expectation
values of theσxj -operators and theσ zj -operators exhibit a decay into the bulk which can be
predicted from conformal field theory. Furthermore, the expressions for the partition functions
formally coincide with partition functions of a Coulomb gas with only magnetic charges or
only electric charges, depending on the choice of the boundary parameters in the Hamiltonian
H . Additionally, the fermionic energies as well as the expressions for the ground-state energies
show a logarithmic dependence on the lattice length for special choices of the boundary
parameters. The study of these physical properties is deferred to two subsequent papers.
In the following we summarize the content of all the papers and point out how the results of
the present paper enter into the further considerations.

In this first paper, we confine ourselves to studying the integrable model with non-
diagonal boundary terms given byH on a finite chain. This includes the calculation of
the spectrum and the wavefunctions as well as the derivation of expressions for the one-
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and two-point correlation functions for theσxj -operators where the subscriptj indicates the
position on the chain. These results are obtained in parallel forH andHlong. Let us briefly
describe how we proceed. We start by fermionizing the HamiltonianHlong. The spectrum
of the original chain as well as the eigenvectors can be retrieved from the spectrum and the
eigenvectors ofHlong by a projection technique which we derive in detail. As a by-product,
we solve the eigenvalue problem for the quantum spin chainHlong. We demonstrate that after
fermionization the problem of finding the eigenvalues of the HamiltonianHlong is reduced
to the problem of finding the zeros of a complex polynomial of degree 2L + 4, which we
write down explicitly. This polynomial, which might very well also appear in other contexts,
has interesting algebraical properties. Namely, for some choices of the parameters, it can be
factorized into cyclotomic polynomials. We looked systematically for these factorizations
since, apart from being of mathematical interest, these examples give access to an exact
solution for the full spectrum of the Hamiltonian, including exact expressions for the ground-
state energy. (In the general, non-Hermitian case, we define the ground-state energy to be
the one with the smallest real part.) Some of these examples are especially interesting since
the factorizations containL-independent factors which lead toL-independent energy gaps of
the Hamiltonian. The corresponding eigenstates will be identified as boundary bound states
in the next paper. Furthermore, the ‘cyclotomic’ examples furnish a reliable ansatz for an
approximative study of the zeros of the polynomial in the general case which will be presented
in the third paper. As an additional result, we get exact formulae for the one- and two-point
correlation functions for theσxj -operators. The value of〈σxL+1〉enters the projection mechanism
mentioned above.

In the second paper, by using the results of the first paper, we calculate one-point functions
for theσxj - and theσ zj -operators for arbitrary positionj and lattice lengthL for several of the
‘exactly solvable’ cases where the polynomial can be factorized into cyclotomic polynomials.
These one-point functions decay into the bulk with a power law typical of conformally invariant
theories. Taking this point of view, we determine their critical exponents.

Furthermore, we make the connection between excitations with anL-independent energy
seen in this paper and boundary bound states. This identification is made, on the one hand,
by studying the spatial profile of the special fermionic excitations in comparison to the spatial
profile of other fermionic excitations and, on the other hand, by comparing them to boundary
bound states found in the Bethe ansatz for theXXZ-chain with diagonal boundary terms [19].
Boundary bound states originally appeared in the field-theoretic approach to the sine–Gordon
model with boundary interaction [12, 16, 18]. In our case, it is surprising that they are related
to special zeros of the complex polynomial as mentioned above and can therefore be found
without invoking the field theory.

A further important new observation is related to the partition functions in the
thermodynamic limit. They will be presented in the third paper, where they will be derived by
studying approximative solutions of the polynomial equation for large values ofLas mentioned
above. The partition functions correspond to conformally invariant systems, a behaviour which
we also found in our previous study of the totally asymmetricXX-chain with non-diagonal
boundary terms [9]. This observation is confirmed by the expansions of the exactly calculated
ground-state energies for largeL. From this expansion one can read off the conformal charge
c = 1 and obtain expressions for the surface free energy. Moreover, the partition functions
we find are the partition functions of a Coulomb gas with only magnetic charges or only
electric charges. The phenomenon of finding only magnetic charges is elucidated by the
construction of a pseudoscalar magnetic charge operator from the fermionic number operators
which commutes with the Hamiltonian for finite chains. Furthermore, for special choices of the
boundary parameters, we find a logarithmicL-dependence for the fermionic energies as well
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as for the expression for the ground-state energies. This may only happen if the Hamiltonian
is non-Hermitian.

The present paper is very technical by nature. For those readers who are not interested in
all the details of our calculations but would nevertheless like to use our results without reading
the whole paper we provide a guide in section 13, which does not, however, follow the sections
in a chronological way. The other sections are organized as follows. In section 2, we use
the fermionization of the chainHlong to reduce the eigenvalue problem of this Hamiltonian to
the eigenvalue problem of a matrixM of dimension(2L + 4) × (2L + 4) whose eigenvalues
correspond to the fermionic energies. We derive some general properties of the eigenvectors
of M (which will be needed in sections 10 and 11) before showing, in section 3, how the
eigenvectors corresponding to the non-zero eigenvalues ofM can be calculated explicitly. The
solution of the eigenvalue problem ofM leads to a complex polynomial (which corresponds to
the characteristic polynomial ofM) whose zeros determine all eigenvalues and eigenvectors
of M. This polynomial is presented in section 4. Section 5 is devoted to the study of the
factorization properties of this polynomial. By constraining the total number of cyclotomic
factors, we systematically determined the boundary parameters for which the polynomial
factorizes into cyclotomic polynomials. Some of these cases are actually one-parameter
families of solutions. In section 6, we show for two examples how the full spectrum of
Hlong is obtained from the factorized form of the polynomial. Section 7 contains the exact
expressions for the ground-state energies of all examples where the polynomial factorizes
into cyclotomic polynomials. In section 8, we present one example of a Hamiltonian with
asymmetric bulk terms where it is also possible to calculate the full spectrum and the ground-
state energy exactly for arbitrary values ofL. In section 9, we derive the projection mechanism
which is needed to obtain the spectrum of the original Hamiltonian fromHlong. To derive the
projection mechanism we need the value of the one-point function of theσxj -operator at the point
j = L+ 1. We express the one- and two-point correlation functions ofσxj in terms of Pfaffians
in section 10. In the cases where the HamiltonianH has noσ z boundary terms or fulfils the
conditionα− = α+ andβ+ = β−, we further reduce these Pfaffians to subdeterminants of a
certain matrix. These expressions will be needed for the calculation of spatial profiles in our
second paper. In section 11, we calculate the above-mentioned value of the one-point function
of σxj at the pointj = L + 1 in the cases where the Hamiltonian is: (a) Hermitian, (b) has no
σ z boundary terms or (c) fulfils the conditionα− = α+ andβ+ = β−. Inputting this result,
we invoke the projection mechanism and present the ground-state energies for the original
HamiltonianH in the ‘exactly solvable’ cases which additionally satisfy at least one of the
afore-mentioned conditions (a)–(c) in section 12. We conclude this paper with a discussion
of our results in section 14. In an appendix we show how to find the eigenvectors of the
matrixM corresponding to the eigenvalue zero. We derive the conditions for the appearance
of zero modes in the spectrum ofHlong and determine respective restrictions for the boundary
parameters.

2. Diagonalization of the Hamiltonian

In this section, we present the general formalism we use for the diagonalization of theXX-
model with boundary terms defined by equation (1.1).H can be diagonalized in terms of
free fermions if it can be written as a bilinear expression inσ±-matrices, since standard
fermionization techniques can then be applied [1, 20].

To obtain a bilinear expression inσ±-matrices forH we add one lattice site at each end
of the chain, site 0 and siteL + 1 as in [14]. Notice that the terms containingσ z do not have
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to be changed. The Hamiltonian now reads

Hlong = 1

2

L−1∑
j=1

[σ +
j σ
−
j+1 + σ−j σ

+
j+1] +

1√
8

[α−σx0 σ
−
1 + α+σ

x
0 σ

+
1 + αzσ

z
1

+β+σ
+
Lσ

x
L+1 + β−σ−L σ

x
L+1 + βzσ

z
L]. (2.1)

As σx0 andσxL+1 commute withHlong, the spectrum ofHlong decomposes into four sectors
(++,+−,−+,−−) corresponding to the eigenvalues±1 of σx0 and σxL+1. Notice that the
projection ofHlong onto a fixed sector(ε1, ε2) has the same eigenvalues as the original
Hamiltonian with the choice of the parametersε1α−, ε1α+, ε2β− and ε2β+ so that by
diagonalizingHlong one simultanously treats four different HamiltoniansH . The eigenvectors
of the original choice of the parametersα−, α+, β− andβ+ can be retrieved by projecting onto
the(++)-sector as described in section 9.

Furthermore, notice that the(++)-sector and the(−−)-sector respectively the(+−)-sector
and the(−+)-sector can be interchanged by using the following transformation which leaves
Hlong invariant:

σxj →−σxj σ
y

j →−σyj σ zj → σ zj j = 0, . . . , L + 1. (2.2)

It maps any eigenvector|9〉 ofHlong from the(ε1, ε2)-sector onto an eigenvector|9〉′ ofHlong

with the same eigenvalue lying in the sector(−ε1,−ε2). Therefore, each eigenvalue ofHlong

is at least twofold degenerate. In the fermionic language, the above symmetry manifests itself
as a zero mode.

In the next section, we will show that the diagonalization ofHlong can be reduced to finding
the eigenvalues and the eigenvectors of a(2L+ 4)× (2L+ 4)matrix which will be denoted by
M. After studying general properties of the eigenvectors, we will describe in section 3 how
they can be obtained in an explicit form. The eigenvectors and the eigenvalues of the matrix
M are determined by the zeros of a polynomial which will be given in section 4.

2.1. Diagonalization ofHlong

Adopting the Majorana representation of the lattices = 1/2 spin operators as in [21], set

τ
+,−
j =

( j−1∏
i=0

σ zi

)
σ
x,y

j . (2.3)

These operators obey the anticommutation relations of a Clifford algebra{τµm, τ νn } = 2δµνnm.
RewritingHlong in terms ofτ+,−

j , we obtain the following bilinear expression

Hlong = −
∑

µ,ν=±1

L−1∑
j=1

Fµ,ντ
µ

j τ
ν
j+1 +Gµ,ντ

µ

0 τ
ν
1 +Kµ,ντ

µ

L τ
ν
L+1 + Iµ,ντµ1 τ

ν
1 + Jµ,ντµL τ

ν
L (2.4)

where

G = 1

2

( 1√
8
(α− − α+)

1√
8
i(α− + α+)

0 0

)
K = 1

2

(
0 1√

8
i(β+ + β−)

0 1√
8
(β+ − β−)

)
F = 1

4

(
0 i
−i 0

)
I = 1

2

(
0 − 1√

8
iαz

1√
8
iαz 0

)
J = 1

2

(
0 − 1√

8
iβz

1√
8
iβz 0

)
.

(2.5)

Here we chose the basis such that the matrices above have the general form

A =
(
A−− A−+

A+− A++

)
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whereA is one of the matrices in (2.5). Now we apply a linear transformation to theτ
+,−
j

operators to obtain another setT +
n , T

−
n of Clifford operators satisfying

{T µm , T νn } = 2δµνnm. (2.6)

Let

T γn =
L+1∑
j=0

∑
µ=±1

(ψγ
n )
µ

j τ
µ

j (2.7)

be the explicit form of this linear transformation whereγ = ±1. One can choose this linear
transformation in such a way that in terms of these new Clifford operatorsHlong takes the
simple form

Hlong =
L+1∑
n=0

3niT
−
n T

+
n . (2.8)

The commutation relations for theT −n , T
+
n imply that the operator iT −n T

+
n has eigenvalues±1

so that the spectrum ofHlong is given by all possible linear combinations involving all3n with
coefficients +1 or−1 and can be read off equation (2.8).

Notice that the operatorsT −n , T
+
n as defined by equation (2.7) are, in general, non-

Hermitian. However, according to a general theorem for Clifford operators [22], it is possible
to apply a similarity transformation to the set of vectors(ψ+

n ) and(ψ−n ) to obtain new Hermitian
Clifford operatorsT −′n , T

+′
n in terms of which the Hamiltonian also takes the form given by

equation (2.8). This will be discussed in detail in the next section.
The coefficients(ψγ

n )
µ

j of equation (2.7) are constrained by requiring that the operators
T
γ
n obey the anticommutation relations of equation (2.6). By computing the commutator

[Hlong, T
±
n ] using forHlong first the expression (2.8) and then (2.4), and comparing both results,

one finds that the eigenvalues3n and the vectors

ψγ
n = ((ψγ

n )
−
0 , (ψ

γ
n )

+
0, . . . , (ψ

γ
n )
−
L+1, (ψ

γ
n )

+
L+1) γ = ± (2.9)

are given by the solutions of the following equations

Mψ+
n = −i3nψ

−
n Mψ−n = i3nψ

+
n (2.10)

whereM is a(2L + 4)× (2L + 4) matrix given by

M =


0 G

−GT 2I F

−FT 0 F

. . . . . . . . .

−FT 2J K

−KT 0

 . (2.11)

Defining

φ+
n = ψ+

n − iψ−n φ−n = ψ+
n + iψ−n (2.12)

leads to the eigenvalue problem

Mφ±n = ±3nφ
±
n . (2.13)

Observe thatM has 2L + 4 eigenvalues althoughHlong has only lengthL + 2. This can
be explained by considering equation (2.13). As one can see, with the appearance of each
eigenvalue3n we also get the negative eigenvalue−3n. As mentioned above, the spectrum
of Hlong is given by all linear combinations of3n with coefficients±1 (see (2.8)) and thus
can be retrieved from the eigenvalues ofM by choosing from each pair of eigenvalues±3n
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one value as a basis element for theZ2–linear combinations. Later we will make this choice
in a systematic way following a physical convention which consists of choosing as relevant
energies the eigenvalues with positive real part.

As can be seen directly from the form ofM, at least two of the eigenvalues are zero. The
corresponding eigenvectors are given by(0, 1, 0, 0, . . . ,0) and(0, 0, . . . ,0, 1, 0). Since the
eigenvalues ofM occur in pairs±3n, from which only one value has to be taken, the zero
eigenvalues lead to one zero mode as already mentioned above. As we are going to see more
explicitly, this zero mode does not appear as a fermionic excitation in the spectrum ofH . This
fact can be explained as follows. Recall that in the case ofHlong the zero mode reflects the
presence of the symmetry given by equation (2.2) which interchanges the(++)-sector and the
(−−)-sector respectively the(+−)-sector and the(−+)-sector. SinceH corresponds only to
the (++)-sector, it is clear that the above symmetry is not a symmetry ofH . Therefore, the
above zero mode does not appear in the spectrum ofH . In the following we are going to call
it the spurious zero mode.

To express the spectrum ofHlong in terms of free fermions, we will now write the expression
for the Hamiltonian in terms of fermionic operatorsbn andan satisfying

{bn, am} = δn,m {bn, bm} = 0 {an, am} = 0 (2.14)

which are obtained from the Clifford operatorsT +
n andT −n by the following transformation:

bn = 1
2(T

+
n + iT −n ) an = 1

2(T
+
n − iT −n ). (2.15)

Hlong then reads

Hlong =
L+1∑
n=0

23nbnan −
L+1∑
n=0

3n =
L+1∑
n=0

23nNn +E0 (2.16)

whereE0 is the ground-state energy of the system andNn the number operator (with eigenvalues
0 and 1) for the fermion with energy 23n.

Notice that in the expression for the number operatorNn in equation (2.16)bn is equal
to a†

n if the operatorsT +
n andT −n are Hermitian. As mentioned above, they can always be

chosen to be Hermitian by applying a similarity transformation to the vectors(ψ+
n ) and(ψ−n )

in equation (2.7). At the same time, the operatorsan andbn are then transformed into new
operatorsa′n andb′n which are adjoints of each other.

In equation (2.16) we have defined the Fermi sea by summing over all negative eigenvalues
ofM. Consequently, we have to choose the other half of the eigenvalues ofM to form fermionic
excitations above the Fermi sea. Here and in the following we will use the convention that
if a pair of eigenvalues has non-vanishing real part, we will denote that with positive real
part by3n. This choice leads to a ground-state energy with the smallest real part. In the
case where the real part (but not the imaginary part) of3n is zero, one has the freedom of
choice to take either the eigenvalue with positive or the eigenvalue with negative imaginary
part as a fermionic excitation above the Fermi sea. This leads to an ambiguity in the value of
the imaginary part of the ground-state energy. A similar problem occurs in the calculations
involving the eigenvectors of the zero modes (e.g. in the calculation of one-point functions of
σ -operators). Namely, the zero eigenvalues ofM also occur in pairs (‘+0’ and ‘−0’) and one
can freely choose which of these two zero eigenvalues belongs to the Fermi sea and which one
corresponds to an excitation with zero energy. In other words, one can choose which is the
creation and which the annihilation operator corresponding to the fermion with zero energy.
We will come back to this point in [23].
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The fermionic operatorsam, bm can be expressed in terms of theτ+
j , τ

−
j -operators by using

the eigenvectors ofM and equation (2.7),

am = 1

2
(T +
m − iT −m ) =

1

2

L+1∑
j=0

∑
µ=±1

(φ+
m)
µ

j τ
µ

j (2.17)

bm = 1

2
(T +
m + iT −m ) =

1

2

L+1∑
j=0

∑
µ=±1

(φ−m)
µ

j τ
µ

j . (2.18)

Notice that if one transforms the operatorsT −n , T
+
n into Hermitian operators as mentioned

above, the set of vectors(φ+
m), (φ

−
m) fulfils the conditions(φ+

m) = (φ−m)∗ andbm becomes the
adjoint ofam.

2.2. Orthogonality relations

In the following, we make some general remarks on the given eigenvalue problem for the skew-
symmetric matrixM = −Mt defined by equation (2.13). We show that we can indeed find a
linear transformation of the form given by equation (2.7) in terms of the vectors(ψ

γ
n )
µ

j (which
are related to the eigenvectors ofM by equation (2.12)) such thatak andbk of equations (2.18)
and (2.17) satisfy (2.14) or equivalently that theT ±k of equation (2.7) are Clifford operators
respectively, i.e. they satisfy (2.6), which was assumed before deriving the eigenvalue equation.
The corresponding orthogonality relations for the eigenvectors ofM which are equivalent to
the anti-commutation relations for the operatorsak, bk lead to further relations between the
eigenvectors (see (2.40) and (2.42)) for special choices of the boundary parameters. They
simplify the computation of correlation functions and are used for projecting to the(++)-
sector ofHlong. This will be the subject of sections 9–11.

Let us first look at the case where the Hamiltonian is Hermitian, i.e.α− = α∗+, β− = β∗+
andαz, βz ∈ R. This implies thatM has only purely imaginary entries and is also Hermitian.
So its eigenvectors can be chosen to form an orthogonal basis with respect to the standard
scalar product. BecauseM∗ = −M we have

φ−k ∝ φ+
k
∗ (2.19)

which can be directly seen by taking the complex conjugate of the equationMφ+
k = 3kφ

+
k .

Thus, after an appropriate normalization of the eigenvectors the orthogonality condition for
the eigenbasis is equivalent to the relations which are necessary and sufficient to define a set
of fermionic operators (equation (2.14)):

L+1∑
j=0

∑
γ

(φ+
l )
γ

j (φ
−
k )

γ

j = 2δlk (2.20)

L+1∑
j=0

∑
γ

(φ+
l )
γ

j (φ
+
k )
γ

j =
L+1∑
j=0

∑
γ

(φ−l )
γ

j (φ
−
k )

γ

j = 0. (2.21)

Note that, due to equation (2.19),φ−k andφ+
k can always be normalized so thatbk andak are

mutually adjoint. For any set of constantsck ∈ C, ck 6= 0 the vectorsψ+
k = 1

2(ckφ
+
k + c−1

k φ
−
k )

andψ−k = 1
2i(ckφ+

k − c−1
k φ

−
k ) satisfy equations (2.10) and the orthogonality relations

L+1∑
j=0

∑
γ

(ψ
µ

l )
γ

j (ψ
ν
k )
γ

j = δµνlk (2.22)

and thus theT ±n defined in terms of the(ψγ
n )
µ

j by equation (2.7) are Clifford operators. If
we defineΨ to be the(2L + 4) × (2L + 4) matrix consisting of the 2L + 4 vectorsψ±k , we
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may rewrite equation (2.22) asΨtΨ = 1. This simply reflects the fact that the automorphism
group of the Clifford algebra is the orthogonal group. Note that hereΨ is not necessarily real.
However, due to equation (2.19),Ψ can always be made real by tuning the parametersck.
SinceΨtΨ = 1 impliesΨΨt = 1, we also obtain

L+1∑
k=0

∑
µ

(ψ
µ

k )
γ

j (ψ
µ

k )
ν
i = δγ νij (2.23)

or, in terms of the components of the eigenvectors ofM,

L+1∑
k=0

∑
µ

(φ
µ

k )
γ

j (φ
−µ
k )νi = 2δγ νij . (2.24)

Using these equations it is possible to invert equations (2.7) and (2.18), (2.17), respectively.
This is necessary to express the spin operatorsσx, σ y, σ z in terms of ladder operators, which
is needed for the calculation of correlation functions and of the projection mechanism. We
will use this form of the orthogonality relations in the next subsection, in order to derive some
further relations between the eigenvectors.

If the Hamiltonian is not necessarily Hermitian but all of the eigenvalues ofM are non-
degenerate except for the eigenvalue 0 corresponding to the eigenvectors(0, 1, 0, 0, . . .) and
(0, 0, . . . ,1, 0), one can still show that equations (2.20) and (2.21) remain valid. In general,
the argument breaks down becauseM is not necessarily diagonalizable. This will become
apparent in sections 3–5.

Choosing the linear combinations

φ+
0 = (0, 1, 0, . . . ,0, i, 0) φ−0 = (0, 1, 0, . . . ,0,−i, 0) (2.25)

as the eigenvectors corresponding to the eigenvalue 0, we ensure that they also satisfy
equations (2.20) and (2.21). We now check equations (2.20) and (2.21) for the other
eigenvectors ofM.

First, letφ+ be a right eigenvector corresponding to the eigenvalue3, i.e.

Mφ+ = 3φ+. (2.26)

BecauseM = −M t , this eigenvector is also a left eigenvector corresponding to the eigenvalue
−3, i.e.

φ+t
M = −3φ+t

. (2.27)

This implies the existence of a right eigenvectorφ− corresponding to the eigenvalue−3.
Now letφk andφl be eigenvectors corresponding to eigenvaluesλk andλl , where we do

not restrict the real parts ofλk andλl to be positive or negative. Using equations (2.26) and
(2.27) we get

φk
tφl = −λk

λl
φk

tφl. (2.28)

So all products of the formφk tφl are zero ifλk 6= −λl . This gives equation (2.21).
To proof the validity of equation (2.20) we additionally have to show that in the case

−λk = λl the productφk tφl cannot vanish. This can be done by consideringφl
†φl which

is always different from zero ifφl 6= 0. Now, due to the assumption of non-degenerate
eigenvalues, the eigenvectors form a basis and thusφl

∗ can be expressed in terms of eigenvectors
φj . Using equation (2.28) with−λk = λl we have

0 6= φ†
l φl = φ∗l t

φl =
∑
j

ajφ
t
jφl = akφt

kφl. (2.29)
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The only term left in the expansion of the productφ†
l φl is proportional to the productφk tφl

due to equation (2.28) and it therefore cannot vanish. So we can normalize the eigenvectors
appropriately in order to satisfy equation (2.20). If there are degeneracies in the spectrum
of M, the above proof can be generalized by using the biorthogonality of left and right
eigenvectors.

We want to point out that the ladder operatorsak andbk are not the adjoints of each other
in general because relation (2.19) is not valid in general. However, as already mentioned in
section 2.1, it is always possible to perform a similarity transformation in order to achieve
b

†
k = ak. This can be seen by choosing an arbitrary real symmetric and orthogonal matrixΨ′.

The transformed vectors

ψ
′µ
k = Ψ′Ψtψ

µ

k (2.30)

define a new set of Clifford operatorsT ′±k which are now Hermitian. Hence the operators
b′k = 1

2(T
′+
k + iT ′−k ) anda′k = 1

2(T
′+
k − iT ′−k ) form a set of fermionic ladder operators satisfying

b
′†
k = a′k. Since the vectorsφ′±k = ψ ′+k ∓ iψ ′−k are no longer eigenvectors ofM but of the

transformed matrix

M ′ = Ψ′ΨtMΨΨ′t (2.31)

the transformation (2.30) corresponds to a similarity transformation of the HamiltonianHlong.

2.3. Special properties of eigenvectors

In some cases there are further relations between the eigenvectors in addition to those of
equations (2.20) and (2.21). They are used in the calculation of correlation functions and are
even necessary for the projection method. First, notice that ifαz = βz = 0, the matricesM
andM2 respectively take the form

M =


0 ∗ 0 ∗ · · ·
∗ 0 ∗ 0
0 ∗ 0 ∗
∗ 0 ∗ 0
...

. . .

 M2 =


∗ 0 ∗ 0 · · ·
0 ∗ 0 ∗
∗ 0 ∗ 0
0 ∗ 0 ∗
...

. . .

 (2.32)

where∗ and 0 both denote 2× 2 matrices. Note that∗ is the notation for an arbitrary 2× 2
matrix and is not necessarily different from zero. Looking at equation (2.32) we see that we
can choose an eigenvectorψ̃+

k of M2 with eigenvalue32
k, i.e.

M2ψ̃+
k = 32

kψ̃
+
k (2.33)

which satisfies

(ψ̃+
k )
±
i = 0 for i odd. (2.34)

Now we defineψ̃−k by

Mψ̃+
k = −i3kψ̃

−
k (2.35)

which is also an eigenvector ofM2 with eigenvalue32
k. Note that this definition does not work

if 3k = 0 and thus we have to excludek = 0 in the following, which labels the eigenvectors
corresponding to the spurious zero mode. Using equations (2.32) and (2.34) we obtain

(ψ̃−k )
±
i = 0 for i even. (2.36)

Due to equations (2.33) and (2.35),ψ̃+
k and ψ̃−k also satisfy (2.10) and thus we obtain

eigenvectors̃ψ±k = ψ̃+
k ∓ iψ̃−k of M satisfying

(ψ̃+
k )
µ

j = (−1)j (ψ̃−k )
µ

j . (2.37)
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Therefore, for each pair of vectorsφ+
k , φ

−
k satisfying equation (2.20), there exists a constant

c ∈ C such that

(φ+
k )
µ

j = c(−1)j (φ−k )
µ

j . (2.38)

Now equation (2.24) can be rewritten as

(1 + (−1)i+j )
L+1∑
k=0

(φ+
k )
γ

j (φ
−
k )

ν
i = 2δγ νij (2.39)

and we end up with

L+1∑
k=0

(φ+
k )
γ

j (φ
−
k )

ν
i = δγ νij for i + j even. (2.40)

Since equation (2.38) is not valid fork = 0 and oddL (see (2.25)) we excludei = 0, ν =
+, j = L + 1, γ = − andj = 0, γ = +, i = L + 1, ν = − in equations (2.39) and (2.40).

If diagonal boundary terms are included and ifα− = α+ andβ− = β+, the eigenvectors
again have a special property. In this caseM andM2 also have the form of equation (2.32),
but now∗ and 0 just denote complex numbers and, in place of (2.38), we obtain

(φ+
k )
±
j = ±c′(φ−k )±j (2.41)

which gives

L+1∑
k=0

(φ−k )
µ

i (φ
+
k )
µ

j = δij . (2.42)

Both equations (2.40) and (2.42) will be used sections 10 and 11.
Note that the proof of (2.40) and (2.42) shown above is not valid if there are degeneracies

or zero modes on top of the spurious zero mode in the spectrum ofM. However, one can
show that it is always possible to build appropriate linear combinations of the eigenvectors
corrsponding to the same eigenvalue such that (2.40) and (2.42) remain valid in addition to
(2.20) and (2.21). This is not automatically true and, therefore, in explicit calculations one
should take care in choosing the right linear combination of eigenvectors corresponding to the
degenerate eigenvalues.

If both conditionsα− = α+, β− = β+ andαz = βz = 0 are satisfied at the same time,
then both equations (2.40) and (2.42) can be satisfied simultaneously. By comparing (2.38)
and (2.41) we obtain the following relation:

(φ−k )
±
j =


±c
′

c
(φ−k )

±
j for j even

∓c
′

c
(φ−k )

±
j for j odd.

(2.43)

Thusc′/c is either 1 or−1 because otherwise the vectorsφ±k would vanish.
Let us briefly summarize what we have obtained so far. IfH is Hermitian, the fact that

M = −M t leads to equations (2.20) and (2.21) which are equivalent to the anticommutation
relations (2.14) of the ladder operators given by (2.18) and (2.17). These equations are still valid
if H is non-Hermitian, but diagonalizable. Some additional properties of the eigenvectors have
been derived for special choices of the boundary parameters (equation (2.40) forαz = βz = 0
and (2.42) forα− = α+, β− = β+) which will be used in sections 10 and 11.
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3. Calculation of the eigenvectors of the matrixM

In the previous section we have shown some general properties of the eigenvectors without
computing them explicitly. This computation is the subject of this section. We will also show
how to obtain the characteristic polynomial which gives the eigenvalues ofM. This polynomial
will be treated extensively in the following sections. SinceM is non-Hermitian in general, we
will also discuss the diagonalizability ofM.

The eigenvalue problem given by equation (2.13) is equivalent to a set of recurrence
relations. Using the notation given by equations (2.12) and (2.9) for the eigenvectors(φ±k ) of
M let us first look at the bulk part:

1
4i((φ±k )

+
j + (φ±k )

+
j+2) = ±3k(φ

±
k )
−
j+1

(16 j 6 L− 2). (3.1)
− 1

4i((φ±k )
−
j + (φ±k )

−
j+2) = ±3k(φ

±
k )

+
j+1

These bulk equations (3.1) can be decoupled by defining

ϕj = (φ±k )−j + i(φ±k )
+
j ϕ̄j = (φ±k )−j − i(φ±k )

+
j (3.2)

which gives

1
4(ϕj + ϕj+2) = λϕj+1 − 1

4(ϕ̄j + ϕ̄j+2) = λϕ̄j+1. (3.3)

Hereλ = ±3k and the functionsϕj andϕ̄j refer to(φ+
k )
−
j and(φ+

k )
+
j for λ = 3k and to(φ−k )

−
j

and(φ−k )
+
j for λ = −3k. From now on we will keepk fixed and omit all subscripts referring

to k.
Next we treat the left boundary and one obtains

ϕ0 = ϕ̄0

λϕ0 = 1√
32
(α−ϕ1− α+ϕ̄1)

(3.4)

λϕ1 = 1√
8
(α+ϕ0 − αzϕ1) + 1

4ϕ2

λϕ̄1 = 1√
8
(αzϕ̄1− α−ϕ̄0)− 1

4ϕ̄2.
(3.5)

From the right boundary one gets

λϕL = 1√
8
(β+ϕL+1− βzϕL) + 1

4ϕL−1

λϕ̄L = 1√
8
(βzϕ̄L − β−ϕ̄L+1)− 1

4ϕ̄L−1

(3.6)

λϕL+1 = 1√
32
(β+ϕ̄L + β−ϕL)

ϕL+1 = −ϕ̄L+1.
(3.7)

Note that we have excluded explicitly the eigenvectors(0, 1, 0, . . .) and(. . . ,0, 1, 0), which
always exist, from the set of solutions of the boundary equations above by settingϕ0 = ϕ̄0 and
ϕ̄L+1 = −ϕ̄L+1. Thus we will obtain at most 2L + 2 linearly independent solutions instead of
2L + 4.

The general solution of the bulk equations (3.3) forλ 6= ± 1
2 is given by

ϕj = axj + bx−j ϕ̄j = g(−x)j + f (−x)−j (3.8)

where 16 j 6 L and up to nowa, b, g, f are free parameters which are independent ofj .
The new variablex is related to the eigenvalueλ via

λ = 1
4(x + x−1). (3.9)
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Forλ = ± 1
2 the general solution is

ϕj = a(±1)j + b(±1)j j ϕ̄j = g(∓1)j + f (∓1)j j. (3.10)

The four parametersa, b, g, f , the undetermined componentsϕ0, ϕ̄0, ϕL+1, ϕ̄L+1 and the
eigenvaluesλ are all fixed by the boundary equations (3.4)–(3.7)—up to the normalization
constants of the eigenvectors. Namely, plugging equation (3.8) into (3.4)–(3.7), we
obtain a homogeneous system of eight linear equations with the unknownsa, b, g, f and
ϕ0, ϕ̄0, ϕL+1, ϕ̄L+1. The condition for the existence of non-trivial solutions of this system is
given by the vanishing of the determinant of the corresponding 8× 8 matrix. This defines a
polynomial equation in the variablex which yields all eigenvaluesλ. Note that forx = ±1
the 8× 8 system of equations always has the non-trivial solutiona = −b, g = −f . This
corresponds to the zero vectorϕj = ϕ̄j = 0 ∀j . To compensate for this fact we divide the
polynomial by(1−x2)2. The treatment of the resulting polynomial equation will be the subject
of the next section (see (4.1)).

In the following we will show how to obtain the eigenvectors forλ 6= ± 1
2 andλ 6= 0

which may be viewed as an alternative way to obtain the secular equation. Substituting (3.4)
into (3.5) using the identitya = ϕ1x

−1 − bx−2 andg = −ϕ̄1x
−1 − f x−2 (see (3.8)) renders

b andf as functions ofϕ1 andϕ̄1, i.e.

b = 1

1− x−2

[( α−α+

x + x−1
−
√

2αz − x−1
)
ϕ1− α2

+

x + x−1
ϕ̄1

]
(3.11)

f = 1

x−2 − 1

[( α−α+

x + x−1
+
√

2αz − x−1
)
ϕ̄1−

α2
−

x + x−1
ϕ1

]
. (3.12)

Thusa andg are given by

a = 1

1− x2

[( α−α+

x + x−1
−
√

2αz − x
)
ϕ1− α2

+

x + x−1
ϕ̄1

]
(3.13)

g = 1

x2 − 1

[( α−α+

x + x−1
+
√

2αz − x
)
ϕ̄1−

α2
−

x + x−1
ϕ1

]
. (3.14)

From the right boundary, by substituting (3.7) into (3.6), we see that furthermore

ϕL−1 +

(
β−β+

4λ
−
√

2βz − 4λ

)
ϕL +

β2
+

4λ
ϕ̄L = 0 (3.15)

ϕ̄L−1−
(
β−β+

4λ
+
√

2βz − 4λ

)
ϕ̄L −

β2
−

4λ
ϕL = 0. (3.16)

Using equations (3.11)–(3.14) and (3.8) in equations (3.15) and (3.16) we get a linear system
of equations of the form(

�11 �12

�21 �22

)(
ϕ1

ϕ̄1

)
= 0 (3.17)

where�ij are the following functions ofx and the six boundary parametersα±, β±, αz andβz
(note thatλ is a function ofx according to (3.9)):

�11 = x−L

1− x−2

[(
β−β+

4λ
−
√

2βz − x−1

)(α−α+

4λ
−
√

2αz − x−1
)

+ (−1)L
(β+α−)2

4λ2

]
+

xL

1− x2

[(
β−β+

4λ
−
√

2βz − x
)(α−α+

4λ
−
√

2αz − x
)

+ (−1)L
(β+α−)2

16λ2

]
(3.18)
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�12 = x−L

x−2 − 1

[(
β−β+

4λ
−
√

2βz − x−1

)
α2

+

4λ
+ (−1)L

(α−α+

4λ
+
√

2αz − x−1
) β2

+

4λ

]
+

xL

x2 − 1

[(
β−β+

4λ
−
√

2βz − x
)
α2

+

4λ
+ (−1)L

(α−α+

4λ
+
√

2αz − x
) β2

+

4λ

]
(3.19)

�21 = x−L

1− x−2

[(α−α+

4λ
−
√

2αz − x−1
) β2
−

4λ
+ (−1)L

(
β−β+

4λ
+
√

2βz − x−1

)
α2
−

4λ

]
+

xL

1− x2

[(α−α+

4λ
−
√

2αz − x
) β2
−

4λ
+ (−1)L

(
β−β+

4λ
+
√

2βz − x
)
α2
−

4λ

]
(3.20)

�22 = x−L

x−2 − 1

[
(α+β−)2

16λ2
+ (−1)L

(
β−β+

4λ
+
√

2βz − x−1

)(α−α+

4λ
+
√

2αz − x−1
)]

+
xL

x2 − 1

[
(α+β−)2

16λ2
+ (−1)L

(
β−β+

4λ
+
√

2βz − x
)(α−α+

4λ
+
√

2αz − x
)]
.

(3.21)

The necessary condition to have non-trivial solutions is obviously that the determinant of the
homogeneous equation (3.17) vanishes.

�11�22−�12�21 = 0. (3.22)

This condition is equivalent to the polynomial equation which is obtained from the
homogeneous 8× 8 system of linear equations mentioned above.

The construction of eigenvectors shown here is not valid forλ = ± 1
2 andλ = 0. However,

one can show that the eigenvectors forλ = ± 1
2 can be obtained by

ϕj = lim
x→±1

(axj + bx−j ) ϕ̄j = lim
x→±1

(g(−x)j + f (−x)−j ) (3.23)

wherea, b, g, f are given by equations (3.11)–(3.14). Using de L’Hospital’s rule one recovers
the form of equation (3.10). The vector componentsϕ1 andϕ̄1 are again given as solutions of
the 2× 2 system (3.17) usingx = ±1.

The solution of the 2×2 linear system (3.17) is straightforward for a given set of boundary
parameters and a given value ofx. It cannot be given in a unique form because some of the
�ij might vanish. We will give the explicit form of the eigenvectors for some special choices
of boundary parameters in [23] where we are going to calculate the expectation values ofσ zj
andσxj wherej denotes the position on the lattice.

If all �ij vanish the corresponding eigenvalue is at least twofold degenerate and we obtain
two linearly independent eigenvectors, sinceϕ1 andϕ̄1 can be chosen independently of each
other. On the other hand, if a zero of the polynomial is twofold degenerate, it is not clear that
all�ij vanish. This comes from the fact that the Hamiltonian is in general non-Hermitian and
might be non-diagonalizable.

We would like to point out that the appearance of an eigenvalueλ 6= 0 which is more
than twofold degenerate would prove thatM is non-diagonalizable. This is indeed the case
for some special choices of the boundaries for a given lattice lengthL. This can be seen by
looking at the factorizations of the polynomial obtained in section 5.

Up to now we have shown how to construct the eigenvectors of the matrixM defined by
equation (2.11). Forλ 6= 0 the components of the eigenvectors are given by

(φ±k )
−
j = 1

2(ϕj + ϕ̄j ) (φ±k )
+
j = − 1

2i(ϕj − ϕ̄j ) (3.24)
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whereϕj and ϕ̄j have the form of equation (3.8) forλ 6= ± 1
2 and are given by (3.23) for

λ = ± 1
2. The parametersa, b, g andf are given by equations (3.11)–(3.14). Finally,λ has

to be determined from equation (3.22) as a function ofx (see (3.9)). The vanishing of the
determinant in equation (3.22) leads to a complex polynomial of degree 4L + 4 in the variable
x which has to be zero. This polynomial will be the subject of the next section.

To obtain eigenvectors corresponding toλ = 0 one has to solve the boundary
equations (3.4)–(3.7) using the bulk solution given by (3.8) withx = ±i. The calculation is
given in the appendix. It turns out that besides the eigenvectors(0, 1, 0, . . .) and(. . . ,0, 1, 0)
of M, which are always present, one may have additional eigenvectors forλ = 0. Running
through the calculation it turns out that this happens ifα−β+ +α+β− = 0. Under this condition
two further linearly independent solutions always exist. If all relevant boundary parameters
vanish, i.e.α− = α+ = β− = β+ = 0, and if at the same timeαz = −βz for L odd or
αz = 1/2βz for L even we have four additional solutions. Two of them are just(1, 0, 0, . . .)
and(. . . ,0, 0, 1). Note that the degeneracy of the eigenvalueλ = 0 might be higher than the
number of linearly independent eigenvectors sinceM might be non-diagonalizable. This will
be discussed in the appendix by considering the polynomial equation which is given in the
next section.

The calculations we have done so far enable us to give a complete set of conditions under
whichM is non-diagonalizable. This is always the case if the degeneracy of an eigenvalue is
higher than the number of linearly independent eigenvectors. The conditions for the eigenvalue
λ = 0 are derived in the appendix, whereas the conditions for the eigenvaluesλ 6= 0 are
obtained from equation (3.17).M is non-diagonalizable, if one of the following conditions is
satisfied:

(i) M has an eigenvalueλ 6= 0 which is more than twofold degenerate;
(ii) M has an eigenvalueλ 6= 0 which is twofold degenerate, but at least one of the�ij is

different from zero;
(iii) λ = 0 is an eigenvalue ofM, but it is more than sixfold degenerate;
(iv) λ = 0 is a sixfold degenerate eigenvalue ofM, but one of the parametersα+, α−, β+, β−

is different from zero;
(v) λ = 0 is a sixfold degenerate eigenvalue ofM, butαz 6= −βz for L odd orαz 6= 1/2βz

for L even, respectively.
If none of these conditions is satisfied,M is diagonalizable.

4. The polynomial equation

Now we turn to the polynomial equation which determines the eigenvalues ofM. As can be
seen directly fromM (equation (2.11)), two of the eigenvalues are always zero. The others are
obtained from (3.9), where the values ofx are given by the solutions of the following polynomial
which has been obtained from (3.22). For later convenience, we use a new variablez = x2:

p(z) = 1

(z− 1)2

[
z2L+4− A(z2L+3 + z) + (B +E2)(z2L+2 + z2)

+(D + 2E2)(z2L+1 + z3) +E2(z2L + z4)− 2E(zL+4 + zL)

+

(
1

2
(−1 +A− B −D)− (−1)LC − 2E2

)
(zL+3 + zL+1)

+(−1 +A− B −D + 2(−1)LC + 4E − 4E2)zL+2 + 1

]
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= 1

(z− 1)2
q(z) = 0. (4.1)

The coefficients are given by

A = 2(−1 +α−α+ + β+β− + α2
z + β2

z )

B = (−1 + 2α−g)(−1 + 2β+β−) + 4(−1 +α−g)β2
z + 4(−1 +β+β−)α2

z

C = (α2
−β

2
+ + α2

+β
2
−)

D = 2(−1 + 2α−g)β2
z + 2(−1 + 2β+β−)α2

z

E = 2αzβz. (4.2)

Note that the polynomialp(z) is already completely determined by five complex
parameters although we started with six parameters in the original Hamiltonian. This can
be explained by the existence of a similarity transformation of the form

H ′ = UHU−1 with U =
L∏
j=1

I1⊗ · · · ⊗ Ij−1⊗
(

1 0
0 ε

)
⊗ Ij+1⊗ · · · ⊗ IL (4.3)

containing one free parameterε. HereIj stands for the identity matrix at the sitej . By using
this similarity transformation, the four boundary parametersα−, α+, β− andβ+ are transformed
as follows

α− → εα− α+→ 1/εα+ β− → εβ− β+→ 1/εβ+ (4.4)

and by choosing a particular value ofε, one can always fix one of the boundary parameters.
The polynomialq(z) has a very special form, because in comparison with a general

polynomial of degree 2L + 4 many of the coefficients are zero. This changes of course when
it is divided by(z− 1)2.

Observe that the polynomialp(z) has degree 2L + 2 although the diagonal form ofHlong

given by equation (2.16) has onlyL+ 2 fermionic excitations3n. The reason, therefore, is the
quadratic relation betweenz and3. Since withz also 1/z is a solution of the polynomial, one
gets each value of3 twice. Taking half of them and adding the additional eigenvalue 0, which
was mentioned in section 2 and explicitly excluded from the set of solutions in section 3, gives
exactly theL + 2 fermionic excitations.

Special solutions of this polynomial will be studied in the next section.

5. Factorization of the polynomial in cyclotomic polynomials

The study of the factorization properties of the polynomial given by equation (4.1) represents
a very interesting mathematical problem. Furthermore, factorizations of the polynomial into
cyclotomic polynomials which we are going to present below are very important because they
allow us to calculate the whole spectrum and other properties ofHlong analytically.

For some special choices of the parametersA, B, C, D andE the polynomial factorizes
exactly into cyclotomic polynomials. These factorizations were found using the following
algorithm. A factorized polynomial of degree 2L + 4 of the form

f (z) =
[ k∏
i=1

(1− pizni )
]
(1− pk+1z

2L+4−∑ ni ) (5.1)

is expanded for a fixed value ofk (corresponding to a fixed number of factors), a fixed value
of L and for all possible combinations ofni . The coefficients of the expanded polynomial
f (z) which are functions of thepi, i = 1, . . . , k + 1, are compared to the coefficients of the
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original polynomialq(z). In this way, one obtains a set of 2L+ 4 coupled equations forpi and
the coefficientsA,B,C,D andE which has been solved usingMaple. Typically, values of
L = 5, 6, 7 were used; for smaller values ofL the equations do not reflect the general situation
because some exponents coincide. For largerL, however, the number of partitions of 2L + 4
intoni, i = 1, . . . , k, becomes too large. Among the solutions only those were kept which are
valid for arbitraryL and not only for the specialL used in the calculation.k has been varied
between 1 and 4. Fork = 5 (six factors) the program did not run properly—it needed too
much memory. However,q(z) cannot factorize into a a larger number of factors of the above
form (5.1) than six with the condition that the correspondingni appear explicitly as exponents
in q(z). In this case the only possible combination forni would be

n1 = n2 = L n3 = n4 = n5 = n6 = 1. (5.2)

In table 1 all factorizations which were calculated as described above are listed. The
factorizations in six factors (entries 14–16) were found by solving the system of coupled
equations for the choice (5.2) ofni and various choices ofpi . Therefore the list might not be
exhaustive for the factorizations into six factors.

The entries 10–16 each furnish a one-parameter family of solutions (where the parameter
is calleds) for which a factorization in cyclotomic polynomials appears. Notice, however, that
E is the only parameter whose value is always fixed, independently ofs. SinceE = αzβz,
this means that in all cases presented in table 1 the product of the coefficients in front of the
diagonal boundary terms is always fixed. Moreover, the entries 10–16 provide examples where
some of the zeros of the polynomialq(z) are always independent ofL (e.g.z = s or z = 1/s).
We will come back to this point in section 7 and in the discussion (section 14).

Looking at the entries 10–16 the remark we made at the end of section 3 that in special
cases the Hamiltonian might not be diagonalizable becomes clear: it is possible to choose the
parameters as a function ofL in such a way that the polynomial has zeros which are more
than twofold degenerate. Take, for example, the case 13 and chooses equal to one solution of
1− zL = 0. Then the corresponding zero ofq(z) is threefold degenerate for the value ofL
chosen above. In this case, one cannot find more than two independent eigenvectors forM (cf
(3.17)) for the corresponding degenerate eigenvalue. Thus, in these special cases (which can
be constructed analogously for the other entries 10–16) the matrixM is not diagonalizable.

For all examples in table 1 it is possible to calculate the spectrum and the ground-state
energy exactly. In the following sections we will give the explicit expressions for the ground-
state energies and for some excitations. With the insight gained from these exactly solvable
cases we will later also treat the general case in the limit of largeL [23].

6. Examples of exact calculations of spectra for the finite lattice

Let us now present two examples of how to calculate the spectrum ofHlong from the factorized
form of the polynomial. We will first take case 4 from table 1. The factorized form of the
polynomialq(z) as given in table 1 suggests the ansatzz = exp(iπ + (2iφ/(2L + 1))). This
leads to the solutions

φ = nπ n = 1, . . . , L. (6.1)

The factor(1 + z) leads to the additional solutionz = −1 which means3 = 0. The factor
(1− z)2 has to be divided out because the fermionic energies are given by the zeros ofp(z)

and not of those ofq(z) which are given in table 1 (also cf (4.1)).
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Table 1. Cases where the polynomial factorizes into cyclotomic polynomials.

Case A B (−1)LC D E q(z)

1 1 0 0 0 0 (1− z)(1− z2L+3)

2 0 −1 0 0 0 (1− z2)(1− z2L+2)

3 −1 0 0 0 0 (1 + z)(1− zL+1)(1− zL+2)

4 1 −1 0 1 0 (1 + z)(1− z)2(1 + z2L+1)

5 0 0 1
2 0 0 (1− zL+1)(1− zL+3)

6 0 0 − 1
2 0 0 (1− zL+2)2

7 1 0 1 0 0 (1− z)(1− zL+1)(1 + zL+2)

8 1 0 −1 0 0 (1− z)(1 + zL+1)(1− zL+2)

9 2 1 s + 1/s 0 0 (1− z)2(1− szL+1)(1− 1/szL+1)

10 s + 1/s 1 1
2(2 + s + 1/s) 0 0 (1− sz)(1− 1/sz)(1− zL+1)2

11 1 +s + 1/s 1 + s + 1/s 0 −1 0 (1− sz)(1− 1/sz)(1− z)(1− z2L+1)

12 0 −1− s − 1/s 1
2(−2 + s + 1/s) −2 1 (1− sz2)(1− 1/sz2)(1− zL)2

13 s + 1/s 1 −2− s − 1/s −2− s − 1/s 1 (1− sz)(1− 1/sz)(1 + z2)(1− zL)2
14 2 +s + 1/s 1 + 2s + 2/s 4 + 2s + 2/s −4− s − 1/s −1 (1− sz)(1− 1/sz)(1− z)2(1 + zL)2

15 2 +s + 1/s 1 + 2s + 2/s −4− 2s − 2/s −4− s − 1/s 1 (1− sz)(1− 1/sz)(1− z)2(1− zL)2
16 −2 + s + 1/s 1− 2s − 2/s 0 −s − 1/s 1 (1− sz)(1− 1/sz)(1 + z)2(1− zL)2
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Then the energies of the fermionic excitations are given by3 = 0 (twice) and, using
equation (3.9), by

3n = 1

2
sin
( nπ

2L + 1

)
n = 1, . . . , L. (6.2)

The energies of the fermionic excitations in the other cases from table 1 have a similar
form. However, in the cases 10, 11 and 13–16 there is always one solution with rootsz = s±1

leading to a fermionic energy3 = 1
4(
√
s +
√

1/s) which is—in contrast to the fermionic
energies obtained in equation (6.2)—independent of the lattice lengthL. We will see later
[23] that this energy can be connected to a boundary bound state. The nature of this state will
be elucidated by studying the corresponding spatial profiles and by comparing some spatial
profiles for special choices of the parameters to a Bethe ansatz solution of theXX-chain with
only diagonal boundary terms [19]. This will be described in detail in [23].

We now consider case 9 of table 1 which is special because the roots of the polynomial all
depend on a parameters and in general do not lie on the unit circle. Therefore, we will briefly
present the corresponding results here. ForL even we obtain the solutions3 = 0 and

3n = 1

2
sin

(
(2n + 1)π

2(L + 1)
+

i ln s

2(L + 1)

)
n = 0, 1, . . . ,

L

2

3n = 1

2
sin

(
(2n + 1)π

2(L + 1)
− i ln s

2(L + 1)

)
n = 0, 1, . . . ,

L− 2

2
(6.3)

for |Im(ln s)| 6 π .
ForL odd we have accordingly3 = 0, and

3n = 1

2
sin

(
nπ

L + 1
+

i ln s

2(L + 1)

)
n = 1, . . . ,

L + 1

2

3n = 1

2
sin

(
nπ

L + 1
− i ln s

2(L + 1)

)
n = 0, 1, . . . ,

L− 1

2
(6.4)

for 0 6 Im(ln s) 6 π . For−π 6 Im(ln s) 6 0 one has to interchange the limits ofn in the
two sets of eigenvalues given by equation (6.4).

In this example, we can see explicitly how the parameters appears in the spectrum. The
argument of the sine is shifted by thes-dependent term i lns/(2L + 2).

For the examples given in table 1, it is also possible to calculate the ground-state energies
exactly. The corresponding expressions will be given in the next section.

7. Exact expressions for the ground-state energies ofHlong

Let us first consider case 4 of table 1 again. The ground-state energy is given by summing up
all negative eigenvalues ofM (cf (2.16)) and this leads to

E0 = −1

2

L∑
n=1

sin
( nπ

2L + 1

)
= −1

4
cot

π

4L + 2
. (7.1)

In case 9, also discussed in section 6, the ground-state energy forL even is given by

E0 = −1

2

(L−2)/2∑
n=0

[
sin

(
(2n + 1)π

2(L + 1)
+

i ln s

2(L + 1)

)
+ sin

(
(2n + 1)π

2(L + 1)
− i ln s

2(L + 1)

)]
−1

2
cosh

(
ln s

2L + 2

)
= −1

2

cosh(ln(s)/(2L + 2))

sin(π/(2L + 2))
. (7.2)
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ForL odd we obtain

E0 = −1

2

[
cot

π

2L + 2
cosh

ln(s)

2L + 2
+ i sinh

ln(s)

2L + 2

]
= − 1

2

cosh((ln(s) + iπ)/(2L + 2))

sin(π/(2L + 2))
. (7.3)

This expression is indeed real if the original Hamiltonian is chosen to be Hermitian. This
can be seen by imposing Hermitian boundary terms in the Hamiltonianα− = α∗+, β+ = β∗−
and solving the system of equations

A = 2= 2(−1 + |α−|2 + |β+|2)
B = 1= (1− 2|α−|2)(1− 2|β+|2)
(−1)LC = s + (1/s) = (−1)L2|α−|2|β+|2 cos 2(ξα + ξβ) (7.4)

whereξα andξβ are the phases ofα− andβ+, respectively. These equations have only the
solution|α−| = |β+| = 1, s = (−1)L exp

(±2i(ξα + ξβ)
)
. For this choice ofs the ground-state

energies given by equations (7.2) and (7.3) are always real.
In table 2, the expressions for the ground-state energies for all cases from table 1 are

listed. Again, they correspond toHlong. In section 12, we will describe how the corresponding
ground-state energies for the original HamiltonianH are obtained from the ones forHlong. It is
remarkable that despite the non-diagonal boundary terms all expressions for the ground-state
energies ofHlong are given in terms of trigonometric functions. The only exception is case 10
where hyperbolic functions appear in the expression for the ground-state energy (see (7.2) and
(7.3)). However, even in this case the model is integrable.

The virtue of table 2 is that one can explicitly see how the ground-state energy is changing
with different boundary parameters (we refer to table 3 of section 12 for some examples in
which boundary parameters of the Hamiltonian correspond to a given choice of theA,B,C,D

andE). This is especially interesting when studying the thermodynamic limit as we will do in
[24]. There we will show that the Hamiltonian with arbitrary boundary terms corresponds to
a conformal invariant theory. In particular, if one expands the expressions of table 2 in powers
of 1/L, one can already see that they have the typical form of the ground-state expansion
corresponding to a conformally invariant theory and one can directly read off the conformal
charge and the surface free energy for the different boundary parameters.

Notice that the table includes a well known spin chain: theXX-chain with open boundaries
is case 10 withs = −1.

The s-dependent cases 9–16 are of special interest because thes-dependence is still
manifest in the expressions of the ground-state energy and one can see how this family of ground
states varies withs. Note that in all cases 10–16 thes-dependent terms appear additively to the
L-dependent part of the ground-state energy (and therewith contribute additively to the surface
free energy in the expansion forL→∞). The physical consequences of theL-independent
solutions will be discussed in the next paper in connection with boundary states [23].

In case 9, however, there is no such simple structure and the parameters is coupled with
L as argument of the cosh term. Indeed, case 9 is special as can be seen already from table 1
(thes-dependence appears in the factors of the polynomial which have degreeL + 1, and not
in the factors of degree 1 or 2 as in all others-dependent cases). This case will be discussed
in detail in the following two articles [23, 24].

8. Example of a spectrum ofHlong with asymmetric bulk terms

Up to now, we have not looked explicitly at Hamiltonians with asymmetric bulk terms, which
we mentioned in the introduction. Recall that we can map such a HamiltonianH̃ given by
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Table 2. Ground state energy ofHlong for the cases from table 1.

Case L even andL odd

1
1

4
− 1

4

(
sin

π

4L + 6

)−1

2
1

4
− 1

4

((
sin

π

2L + 2

)−1

+ cot
π

2L + 2

)
4 −1

4
cot

π

4L + 2

11
1

4
− 1

4

(
sin

π

4L + 2

)−1

− 1

4
(s1/2 + s−1/2)

L even L odd

3
1

2
− 1

4

((
sin

π

2L + 2

)−1

+ cot
π

2L + 4

)
1

2
− 1

4

((
sin

π

2L + 4

)−1

+ cot
π

2L + 2

)

5
1

2
− 1

4

((
sin

π

2L + 6

)−1

+

(
sin

π

2L + 2

)−1)
1

2
− 1

4

(
cot

π

2L + 2
+ cot

π

2L + 6

)

6
1

2
− 1

2
cot

π

2L + 4

1

2
− 1

2

(
sin

π

2L + 4

)−1

7
1

4
− 1

4

((
sin

π

2L + 2

)−1

+

(
sin

π

2L + 4

)−1)
1

4
− 1

4

(
cot

π

2L + 2
+ cot

π

2L + 4

)

8
1

4
− 1

4

(
cot

π

2L + 2
+ cot

π

2L + 4

)
1

4
− 1

4

((
sin

π

2L + 2

)−1

+

(
sin

π

2L + 4

)−1)

9 −1

2

(
cosh

ln(s)

2L + 2

)(
sin

π

2L + 2

)−1

−1

2

(
cosh

ln(s) + iπ

2L + 2

)(
sin

π

2L + 2

)−1

10
1

2
− 1

2

(
sin

π

2L + 2

)−1

− 1

4
(s1/2 + s−1/2)

1

2
− 1

2
cot

π

2L + 2
− 1

4
(s1/2 + s−1/2)

12
1

2
− 1

2
cot

π

2L
− 1

4
(s1/4 + s−1/4)

1

2
− 1

2

(
sin

π

2L

)−1

− 1

4
(s1/4 + s−1/4)

− i

4
(s1/4 − s−1/4) − i

4
(s1/4 − s−1/4)

13
1

2
− 1

2
√

2
− 1

2
cot

π

2L
− 1

4
(s1/2 + s−1/2)

1

2
− 1

2
√

2
− 1

2

(
sin

π

2L

)−1

− 1

4
(s1/2 + s−1/2)

14 −1

2

(
sin

π

2L

)−1

− 1

4
(s1/2 + s−1/2) −1

2
cot

π

2L
− 1

4
(s1/2 + s−1/2)

15 −1

2
cot

π

2L
− 1

4
(s1/2 + s−1/2) −1

2

(
sin

π

2L

)−1

− 1

4
(s1/2 + s−1/2)

16
1

2
− 1

2
cot

π

2L
− 1

4
(s1/2 + s−1/2)

1

2
− 1

2

(
sin

π

2L

)−1

− 1

4
(s1/2 + s−1/2)

equation (1.2) to a HamiltonianH of the form given by (1.1) which has symmetric bulk
terms andL-dependent boundary terms of the special form given by (1.3). Using the methods
previously described, we can solve the eigenvalue problem for the HamiltonianHlong and in
this way obtain the spectrum of̃Hlong, whereH̃long is obtained fromH̃ in the same way asHlong

fromH by adding one site at each end of the chain. We will carry this out for one example.
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We choose a HamiltoniañHlong whose transformedHlong has boundary terms corresponding
to case 9. Notice that this is the only factorizable case where this can be done independently
of L if p 6= q, i.e. the analysis can simultanously be carried out for all HamiltoniansH̃ of the
chosen type with arbitrary length. In all other cases, starting from one factorizable case and
changing the lengthL would result in boundary parameters belonging to another (perhaps not
even factorizable) case.

One possible choice for the boundary parameters in case 9 is given by (as can be directly
seen from (4.2))

α−α+ = 1 β+β− = 1 (−1)L(α2
−β

2
+ + α2

+β
2
−) = s +

1

s
αz = 0= βz.

Expressingα− in terms ofα+ andβ− in terms ofβ+ and using equation (1.3), we obtain

s = (−1)L
(
β ′+
α′+

)2

Q2−2L

(
or 1/s = (−1)L

(
β ′+
α′+

)2

Q2−2L

)
.

Using the results obtained in equation (6.3) we get for the fermionic excitations for evenL

3 = 1

2
sin

(
(2n + 1)π

2L + 2
± i

[
(2 lnQ + ln (β ′+/α

′
+))

L + 1
− lnQ

])
n = 0, . . . ,

L− 2

2

3 = 1

2
cosh

[
2 lnQ + ln (β ′+/α

′
+)

L + 1
− lnQ

]
. (8.1)

The quasi-momenta(2n + 1)π/(2L + 2) are shifted by the constant

i

[
2 lnQ + ln (β ′+/α

′
+)

L + 1
− lnQ

]
.

The secondL-independent term of this constant is typical for asymmetric bulk terms as
will be seen in [24]. A similar expression has been obtained in [8] for the fermionic
excitations ofH̃ with totally asymmetric bulk terms (p = 1, q = 0), α− 6= 0, β+ 6= 0
andα+ = β− = αz = βz = 0.

The ground-state energy is given by summing up all negative eigenvalues ofM, leading
to

E0 = − cosh

(
ln(qβ ′+/pα

′
+)

L + 1
− lnQ

)(
2 sin

( π

2L + 2

))−1
. (8.2)

Observe that forp/q = 1 we obtain the previous expression calculated for case 9.

9. Projection method and theσx one-point functions

Up to now we have dealt only with the HamiltonianHlong given by equation (2.1) which was
obtained fromH (see (1.2)) by adding one lattice site at each end of the chain. In this section
we will explain how the spectrum ofH is related to the spectrum ofHlong.

Since, as mentioned in section 2,σx0 and σxL+1 commute withHlong the spectrum
decomposes into four sectors(++,+−,−+,−−) corresponding to the eigenvalues±1 of σx0
andσxL+1. The eigenvalues and eigenvectors ofH are related to the(++)-sector in the following
way.

If |E〉 is an eigenvector ofH corresponding to an eigenvalueE then|Elong〉 = |+〉⊗|E〉⊗
|+〉 is an eigenvector ofHlong corresponding to the same eigenvalueE, whereσx0 |+〉 = |+〉 and
|Elong〉 is an element of the spaceC2⊗CL⊗C2. Thus the whole spectrum ofH is contained in
the spectrum ofHlong projected onto the(++)-sector. Since the dimension of the(++)-sector
is 2L, we conclude that the spectrum ofH is identical to the spectrum ofHlong projected onto
the(++)-sector.
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Before describing how we will proceed to project to the(++)-sector, we make some
definitions which are needed later. First, we want to remind the reader thatM defined
by equation (2.11) always has a twofold degenerate eigenvalue 0 corresponding to the
eigenvectors(0, 1, 0, 0, . . .) and(0, 0, . . . ,1, 0) of M. Using the Clifford operatorsτ±j given
by equation (2.3), we now define the corresponding ladder operators

b0 = (τ+
0 − iτ−L+1)/2 a0 = (τ+

0 + iτ−L+1)/2. (9.1)

We also define the vacuum representation with the lowest weight vector|vac〉 by

ak|vac〉 = 0 ∀k. (9.2)

Because we are interested in eigenstates ofσx0 andσxL+1 we define the vectors

|v±〉 = 1√
2
(|vac〉 ± |0〉) (9.3)

where|0〉 = b0|vac〉. Observe that

σx0 |v±〉 = ±|v±〉. (9.4)

Now we will proceed in three steps. In the first step (subsection 9.1) we will show, using
some algebraic considerations, that the vectors|v±〉 are also eigenvectors ofσxL+1. It will turn
out that the eigenvalues ofσxL+1 corresponding to the eigenvectors|v+〉 and|v−〉 always have
opposite signs, i.e.

σxL+1|v±〉 = ±η|v±〉 (9.5)

with η2 = 1. The value ofη plays a crucial role in the following. We will also show that the
(++)-sector consists either of the states

r∏
j=1

bkj |v+〉 with r even (9.6)

or
r∏
j=1

bkj |v−〉 with r odd (9.7)

where 0< kj 6 kj+1. Sincekj 6= 0, the creation operator of the spurious zero mode defined
by equation (9.1) does not appear in (9.6) and (9.7). The ground state ofH corresponds to|v+〉
or to blowest|v−〉, whereblowest denotes the creation operator corresponding to the fermionic
energy with smallest real part andk 6= 0.

Whether the(++)-sector consists of the states (9.6) or (9.7) will be shown to depend on the
value ofη (see (9.5)) which will be calculated by computing the expectation value〈v+|σxL+1|v+〉.
Note that we define〈v±| via

〈v±| = 1√
2
(〈vac| ± 〈vac|a0) (9.8)

where〈vac| denotes the left vacuum ofHlong, i.e.

〈vac|bk = 0. (9.9)

Note that ifHlong is not Hermitian,〈vac| is not equal to|vac〉† in general.
In the second step (section 10), we will show how to calculate the one-point function

f (j) = 〈v+|σxj |v+〉. (9.10)

In the present context, this is done merely for technical reasons in order to calculatef (L + 1);
however, it will be essential in another context. Namely, the explicit calculation off (j) will
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be presented in the following paper [23]. We would already like to remark that the calculation
of f (j) is similar to the calculation of the two-point function

g(i, j) = 〈v+|σxi σ xj |v+〉. (9.11)

Note that, due to equation (9.4), one already sees thatf (j) = g(0, j). We show in section 10
that the functionsf (j) andg(i, j) are both given by Pfaffians of submatrices of the same
matrix. We will, furthermore, generalize these considerations to states of the form (9.6) and
(9.7). These results also apply toH although we started with the larger space of states of
Hlong.

Using equations (2.40) and (2.42), we will obtain determinant representations forf (j)

andg(i, j) which can be treated analytically in the calculation off (L + 1). This calculation
can be found in section 11 and will be the third step.

9.1. Algebraic considerations

In this subsection, we will show that the(++)-sector consists either of the states given by (9.6)
or (9.7) and clarify the role ofη given in (9.5). Because

(φ±k )
+
0 = (φ±k )−L+1 = 0 ∀k 6= 0 (9.12)

which can be seen directly from the matrixM, we obtain the commutation relations

[σxL+1, bk] = [σxL+1, ak] = {σx0 , bk} = {σx0 , ak} = 0 ∀k 6= 0 (9.13)

from equations (2.18) and (2.17) and therefore

[σx0 , Nk] = [σxL+1, Nk] = 0 ∀k 6= 0. (9.14)

Due to equation (9.14) the vectors|v±〉 have to be eigenvectors ofσxL+1, i.e.

σxL+1|v±〉 = η±|v±〉. (9.15)

Thus the sector containing|v+〉 respectively|v−〉 is well defined and given by the values ofη+

andη−, respectively. Note that (9.15) is not as precise as (9.5) because (9.5) impliesη+ = −η−.
Due to equations (9.13) we can make the following statement concerning the vectors of a

given sector. If an arbitrary vector|v〉 is an element of the(±ε)-sector whereε ∈ {+,−}, then
bk|v〉 with k 6= 0 is an element of the(∓ε)-sector. Now one has to distinguish two cases.

(i) If |v+〉 is an element of the(++)-sector, i.e.η+ = +1, then all the states given by (9.6) are
also elements of the(++)-sector. The vector|v−〉 then has to be an element of the(−−)-sector
because otherwise the(−−)-sector would be missing in the space of states, which is not the
case. Thus, we haveη− = −1.

(ii) If |v+〉 is an element of the(+−)-sector, i.e.η+ = −1, then|v−〉 has to be an element
of the(−+)-sector. Otherwise|v−〉 would be an element of the(−−)-sector and there would
be no(++)-sector. As a consequence, we have thatη− = +1 and all the states given by (9.7)
are elements of the(++)-sector.

In both cases, the subspace spanned by the vectors (9.6) respectively (9.7) has dimension
2L and thus they form a basis of the(++)-sector. Because the values ofη+ andη− always have
opposite signs, we will use the variableη defined by equation (9.5) in the following.

10. One- and two-point functions ofσx

In this section we show how to compute the one- and two-point functions for theσxj operator
with respect to the states|v±〉 defined by equation (9.3) and〈v±| defined by (9.8) following
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the method of Lieb, Schultz and Mattis (LSM) [1]. The computation of the correlators of the
operatorsσyj can be done similarly. In this paper, however, we are only interested in the value
of 〈v+|σxj |v+〉 at the particular pointj = L + 1 which is calculated in section 11 using the
results of this section. Due to equation (9.5) we thereby obtain the value ofη which is needed
for the projection fromHlong to H as described in the previous section. The calculation for
general values ofj will be part of the second paper of this series [23].

The main difference in comparison to the problem of LSM [1] is that in our case the one-
point functions do not vanish because of the non-diagonal boundary terms we are considering.
They can be calculated in the same way as the two-point correlators. At the end of this section,
we will briefly note how to compute the one- and two-point functions for excited states of
Hlong of the form (9.6) and (9.7). This is not necessary for the calculation ofη defined in
equation (9.5), but it is needed for the calculation of the one- and two-point functions for the
eigenstates ofH . Note that ifη = −1 the ground state ofH corresponds to an excited state
of Hlong.

We now proceed to the calculation of the one- and two-point functions. Writingσxj in
terms of theτ±i defined in equation (2.3), we obtain

〈v±|σxj |v±〉 = ±(−i)j 〈v±|τ−0
∏
k<j

τ+
k τ
−
k τ

+
j |v±〉 (10.1)

which is up to the sign exactly the two-point function〈v±|σx0 σxj |v±〉. In general,

〈v±|σxi σ xj |v±〉 = (−i)j−i〈v±|τ−i
∏
k<j

τ+
k τ
−
k τ

+
j |v±〉. (10.2)

Of course, i denotes
√−1. Using equation (2.24),τ±j can be expressed in terms of ladder

operatorsak andbk, i.e.

τ
µ

j =
L+1∑
k=0

(φ−k )
µ

j ak + (φ+
k )
µ

j bk. (10.3)

Because(φ±0 )
µ

j is only different from zero if eitherj = 0 andµ = + or j = L + 1 andµ = −
(compare equations (9.1) and (2.18) and (2.17)) we have

〈v±|τ−i
∏
k<j

τ+
k τ
−
k τ

+
j |v±〉 = 〈vac|τ−i

∏
k<j

τ+
k τ
−
k τ

+
j |vac〉. (10.4)

For simplicity, we will denote〈vac|Ô|vac〉 by 〈Ô〉 in the following whereÔ denotes an
arbitrary operator. Using Wick’s theorem we are left with the calculation of the Pfaffian of the
antisymmetric matrixA, i.e.〈

τ−i
∏
k<j

τ+
k τ
−
k τ

+
j

〉
= Pf A (10.5)

where

A =



0 〈τ−i τ+
i+1〉 〈τ−i τ−i+1〉 〈τ−i τ+

i+2〉 · · · 〈τ−i τ+
j 〉

〈τ+
i+1τ

−
i 〉 0 〈τ+

i+1τ
−
i+1〉 〈τ+

i+1τ
+
i+2〉 · · · 〈τ+

i+1τ
+
j 〉

〈τ−i+1τ
−
i 〉 〈τ−i+1τ

+
i+1〉 0 〈τ−i+1τ

+
i+2〉 · · · 〈τ−i+1τ

+
j 〉

〈τ+
i+2τ

−
i 〉 〈τ+

i+2τ
+
i+1〉 〈τ+

i+2τ
−
i+1〉 0 · · · 〈τ+

i+2τ
+
j 〉

...
...

...
...

. . .
...

〈τ+
j τ
−
i 〉 〈τ+

j τ
+
i+1〉 〈τ+

j τ
−
i+1〉 〈τ+

j τ
+
i+2〉 · · · 0


. (10.6)
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We want to remind the reader that the Pfaffian of a 2n×2n antisymmetric matrixAwith matrix
elementsaij is defined by

PfA = 1

n!2n
∑
σ∈S2n

sgn(σ )aσ(1)σ (2)aσ(3)σ (4) . . . aσ(2n−1)σ (2n) (10.7)

whereS2n denotes the symmetric group of degree 2n.
The expectation values of the basic contractions of pairs which form the entries ofA are

evaluated using equation (10.3). Due to the property of〈vac| (cf (9.9)) we obtain

〈τµi τ νj 〉 =
L+1∑
k=0

(φ−k )
µ

i (φ
+
k )
ν
j . (10.8)

In general, no further simplification is possible.
Nevertheless, there exist two special cases where the calculation of the Pfaffian can be

reduced to the calculation of a determinant. Namely, this is possible if no diagonal boundary
terms are present or ifα− = α+ andβ− = β+. This reduction uses the additional relations
for the eigenvectors given by equations (2.40) or (2.42), respectively. Note that in this paper
the general relation(PfA)2 = detA is of no use because we are exactly interested in the sign
of η.

In the absence of diagonal boundaries we can use equation (2.40) to simplify (10.8). Using
similar arguments as LSM we also obtain a determinant representation for the correlation
functions; however, the contributing contractions are different from theirs. In fact, using
equation (2.40) results in

〈τµi τ νj 〉 = 0 for i + j even (10.9)

and thus the correlation functions are given by subdeterminants of the(L+ 1)× (L+ 1)matrix

D =


〈τ−0 τ+

1 〉 〈τ−0 τ−1 〉 〈τ−0 τ+
3 〉 · · ·

〈τ+
2 τ

+
1 〉 〈τ+

2 τ
−
1 〉 〈τ+

2 τ
+
3 〉 · · ·

〈τ−2 τ+
1 〉 〈τ−2 τ−1 〉 〈τ−2 τ+

3 〉 · · ·
...

...
...

. . .

 . (10.10)

Denoting byDij the matrixD after elimination of the firsti rows and columns and the last
L + 1− j rows and columns we can write

PfA = ij−ifij detDij (10.11)

where

fij =


−i if i even andj odd

i if i odd andj even

1 otherwise.

(10.12)

The calculation of PfA also simplifies ifα+ = α− andβ+ = β−. In this case we can utilize
equation (2.42) to obtain

〈τµi τµj 〉 = 0. (10.13)

This again results in a determinant representation of PfA, i.e.

PfA =

∣∣∣∣∣∣∣∣∣
〈τ−i τ+

i+1〉 〈τ−i τ+
i+2〉 · · · 〈τ−i τ+

j 〉
〈τ−i+1τ

+
i+1〉 〈τ−i+1τ

+
i+2〉 · · · 〈τ−i+1τ

+
j 〉

...
...

...

〈τ−j−1τ
+
i+1〉 〈τ−j−1τ

+
i+2〉 · · · 〈τ−j−1τ

+
j 〉

∣∣∣∣∣∣∣∣∣ . (10.14)
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By simple modifications one can generalize the results of this section to excited states
of the form (9.6) or (9.7). The argument runs as follows. Any state given by elementary
excitations can be regarded as the vacuum state|vac′〉 of a new set of ladder operators, where
theak andbk of the excited fermions are interchanged. This corresponds to an interchange
of the eigenvectorsφ−k andφ+

k (see (2.17) and (2.18)). Thus the calculation of correlation
functions for the states in (9.6) and (9.7) is equivalent to the calculation of the correlation
functions for the states|v+′〉 defined in the same way as|v+〉 in equation (9.3) but now
using

|vac′〉 =
r∏
j=1

bkj |vac〉 (10.15)

as vacuum state wherer is even or odd, respectively, andk 6= 0. The left vacuum defined
by equation (9.9) has to be modified analogously. As a consequence, we only have to replace
equation (10.8) by

〈τµi τ νj 〉 =
∑
k unexc.

(φ−k )
µ

i (φ
+
k )
ν
j +

∑
k exc.

(φ+
k )
µ

i (φ
−
k )

ν
j . (10.16)

11. Calculation of〈σxL+1〉

If the diagonal boundary terms are absent or ifα+ = α− andβ+ = β−, we can make use of
equations (10.11) or (10.14), respectively, in order to calculate

η = 〈v+|σxL+1|v+〉. (11.1)

Recall that we need the value ofη to decide whether the(++)-sector of the space of states of
Hlong is given by the states of the form (9.6) or (9.7).

Thus, if no diagonal boundary terms are present, we have to calculate detD, whereD is
defined by equation (10.10). This determinant can be written as the product of two determinants

(−1)L detD = detAg detAu (11.2)

where

Ag =


(φ−1 )

−
0 (φ−2 )

−
0 (φ−3 )

−
0 · · ·

(φ−1 )
−
2 (φ−2 )

−
2 (φ−3 )

−
2 · · ·

(φ−1 )
+
2 (φ−2 )

+
2 (φ−3 )

+
2 · · ·

...
...

...
. . .



Au =


(φ+

1)
−
1 (φ+

1)
+
1 (φ+

1)
−
3 · · ·

(φ+
2)
−
1 (φ+

2)
+
1 (φ+

2)
−
3 · · ·

(φ+
3)
−
1 (φ+

3)
+
1 (φ+

3)
−
3 · · ·

...
...

...
. . .

 . (11.3)

The factor(−1)L is due to permutations of rows and columns which can be seen by comparing
the productAgAu with D. Without loss of generality, we may assume that the eigenvectors are
normalized in such a way that they satisfy equation (2.38) withc = 1. Using equation (2.40)
we then find

AgA t
g = 1 AuA t

u = −1. (11.4)

Due to the special form of the matrixM (see equation (2.32)) and (2.38), the two matricesAg
andAu are related by a matrixMg→u via

Λ−1Mg→uAg = A t
u (11.5)
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whereΛkk′ = 3kδkk′ with k > 0 . The matrixMg→u is given by

Mg→u =


−G′t F 0 0 0

0 −F t . . . 0 0

0 0
. . . F 0

0 0 0 −F t K ′

 (11.6)

for L odd or

M g→u =


−G′t F 0 0 0

0 −F t . . . 0 0

0 0
. . . F 0

0 0 0 −F t F

0 0 0 0 −K ′t

 (11.7)

for L even, where we have denoted byG′ the matrixG of equation (2.5) with the second row
eliminated and byK ′ the matrixK of (2.5) with the first column eliminated. Note that the
eliminated rows and columns contain only entries which are equal to zero.

Using equations (11.5) and (11.4) in (11.2), we obtain

detD = (−1)L detΛ−1 detMg→u. (11.8)

The value of detMg→u can be computed in an elementary way,

detMg→u =
{−(α−β+ + α+β−)/4L+1 for L odd
−i(α−β+ + α+β−)/4L+1 for L even.

(11.9)

Plugging this into equation (10.11), we end up with

PfA = (−i)L+1 α−β+ + α+β−
4L+1

∏
k 6=03k

. (11.10)

If α− = α+ andβ− = β+, we obtain the same result by using equation (10.14) and performing
a similar calculation. Combining (10.1), (10.4) and (10.5) with (11.10) we are left in both
cases with

η = 〈v+|σxL+1|v+〉 = (−1)L+1 α−β+ + α+β−
4L+1

∏
k 6=03k

. (11.11)

Notice that in these cases the expression ofη does not depend onαz andβz. It is not possible to
calculate the product of all eigenvalues in equation (11.11) in general, but the squared product
of eigenvalues can be calculated from detM ′ whereM ′ denotes the matrixM with the second
and the last but one row and column eliminated. In both cases this yields

detΛ2 = (−1)L+1 detM ′ = (α−β+ + α+β−)2/42L+2. (11.12)

If the Hamiltonian is Hermitian, the product of eigenvalues is simply given by
∏
k 6=03k =

|α−β+ + α+β−|/4L+1. This also holds for Hamiltonians with only real entries because in these
cases the product is real and positive. Thus, we can apply equation (11.11) directly. Otherwise,
one would have to know all the eigenvalues explicitly.

Note that the value ofη can only change by variation of the boundaries if one crosses a
point in the parameter space at which an additional mode with Re3k = 0 andk 6= 0 exists.
This is due to the fact that the eigenvalues ofH andHlong are continuous functions of the
boundary parameters. However, at a point satisfying the above condition the value ofη is not
well defined, because the corresponding ladder operatorsak andbk are not well defined as
already mentioned in section 2.1. Therefore, one can aquire a change of sign inη by passing
through such a point.
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If H is Hermitian the condition to have a mode with Re3k = 0 andk 6= 0 is equivalent
to the existence of an additional zero mode. The presence of such a zero mode corresponds
to the rootz = −1 in the polynomial given by equation (4.1). This implies the condition
α−β+ + α+β− = 0. Thus ifH is Hermitian, i.e. α+ = α∗−, β+ = β∗−, we have to only
distinguish the two regions Re(α−β+) > 0 and Re(α−β+) < 0. Thus, we conclude that ifH
is Hermitian we obtain the following expression forη:

η = (−1)L+1sign(Re(α−β+)). (11.13)

The results of this section, namely equations (11.11) and (11.13), allow us to calculate the
ground-state energy ofH for the exactly solvable cases of table 1. This will be the subject of
section 12.

12. Ground-state energies for the HamiltonianH in the exactly solvable cases

In section 9 we have shown that the ground state ofH corresponds either to|v+〉 or toblowest|v−〉
whereblowest is the creation operator corresponding to the fermion energy with the smallest
real part, which we will denote by 23lowest in the following, and the|v±〉 are defined in
equation (9.3). Which of these two states corresponds to the ground state depends on the
eigenvalueη of |v+〉 with respect to the operation ofσxL+1. The eigenvalueη is either +1 or
−1. If η = 1, then the ground state corresponds to|v+〉 and the ground-state energy ofH is
equal to the ground-state energy ofHlong. If η = −1, then the ground-state corresponds to
blowest|v−〉 and the ground-state energy ofH is given by the sum of the ground-state energy
of Hlong and 23lowest. For the exactly solvable cases, the ground-state energies forHlong are
already contained in table 2.

If at least one of the following conditions is satisfied:
(a)Hlong is Hermitian,
(b)Hlong has noσ z boundary terms (αz = 0= βz),
(c) α− = α+ andβ+ = β−,

the value ofη can be easily calculated by using the explicit formulae of section 11. In
cases (b) and (c), the expression forη is given in equation (11.11) in terms ofα−, β+, β−
andα+ and the eigenvalues3k of M. In case (a) whereHlong is Hermitian,η is given by
equation (11.13) in terms ofα− andβ+ alone. In the other cases, one would have to calculate
the Pfaffian of the matrixA given by equation (10.6) using different methods than those we
used in sections 10 and 11 to decide which of the states|v+〉 or blowest|v−〉 corresponds to the
ground state ofH .

To determine the ground-state energy for a given HamiltonianH of types (a)–(c) one
has to calculate the expression forη given by equation (11.11) or (11.13). Analytically, the
ground-state energy forH can be calculated with our methods only for the cases given in table 1
where the polynomial factorizes into cyclotomic polynomials and where one knows the whole
spectrum ofHlong. These cases are given in terms of the parametersA,B,C,D andE. In
order to put our machinery to work, we need the corresponding parametersα−, α+, β−, β+, αz
andβz. Since the transformation fromA,B,C,D andE to α−, α+, β−, β+, αz andβz (which
is given in (4.2)) is nonlinear and leads from five to six variables, the choice of the parameters
α−, α+, β−, β+, αz andβz for a given setA,B,C,D andE is not unique, creating some freedom
of choice.

For all the cases listed in table 1, we solved equations (4.2) forα−, α+, β−, β+, αz andβz
and allowed only solutions which additionally satisfied one of the conditions (a)–(c) above.
These solutions are listed in table 3. The choices of boundary parameters obtained from those
given in table 3 by application of an obvious similarity transformation to the HamiltonianH ,
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Table 3. Exactly solvable cases from table 1. Details needed for the projection method.

Case L αz βz α− α+ β+ β− s 23lowest

1 arb. 0 0 α−α+ = 1 β+β− = 1
2 α+β− = ± (1±i)

2 sin π
4L+6

2 arb. 0 0 α−α+ = 1 β+ = β− = 0 0

arb. 0 ± 1√
2

α− = ± 1√
2
eiφ α+ = ± 1√

2
e−iφ 0

β+ = β− = 0

3 arb. 0 0 α−α+ = 1
2 β+ = β− = 0 0

4 arb. 0 ± 1√
2

α− = ±eiφ α+ = ±e−iφ β+ = β− = 0 0

arb. 0 ± i√
2

α− = α+ = 0 β+ = β− =
√

2 0

5 even 0 0 α−α+ = 1
2 β+β− = 1

2 α+β− = ± 1
2 sin π

2L+6

5 odd 0 0 α−α+ = 1
2 β+β− = 1

2 α+β− = ± i
2 0

6 even 0 0 α−α+ = 1
2 β+β− = 1

2 α+β− = ± i
2 0

6 odd 0 0 α−α+ = 1
2 β+β− = 1

2 α+β− = ± 1
2 sin π

2L+4

7 even 0 0 α−α+ = 1
2 β+β− = 1 α+β− = ± 1√

2
sin π

2L+4

7 odd 0 0 α−α+ = 1
2 β+β− = 1 α+β− = ± i√

2
0

8 even 0 0 α−α+ = 1
2 β+β− = 1 α+β− = ± i√

2
0

8 odd 0 0 α−α+ = 1
2 β+β− = 1 α+β− = ± 1√

2
sin π

2L+4

9 even 0 0 α−α+ = 1 β+β− = 1 α+β− = ±√s min(sin( π
2L+2 ± i ln s

2L+2))

even 0 0 α−α+ = 1 β+β− = 1 α+β− = ± 1√
s

min(sin( π
2L+2 ± i ln s

2L+2))

even 0 ± i√
2

α− = α+ = ± 1√
2
β+ = β− = ±

√
2 s = 1 sin π

2L+2

α+β− = ±1

9 odd 0 0 α−α+ = 1 β+β− = 1 α+β− = ±i
√
s min(sin( π

L+1 ± i ln s
2L+2))

odd 0 0 α−α+ = 1 β+β− = 1 α+β− = ± i√
s

min(sin( π
L+1 ± i ln s

2L+2))

odd 0 ± i√
2

α− = α+ = ± 1√
2
β+ = β− = ±

√
2 s = −1 sin π

2L+2

α+β− = ±1

10 even 0 0 α−α+ = s+1
2 β+β− = s+1

2s min(sin π
2L+2,

1
2(s

1/2 + s−1/2))

α+β− = ± (s1/2+s−1/2)
2

even 0 ± i√
2

α− = α+ = ± 1√
2

min(sin π
2L+2,

1
2(s

1/2 + s−1/2))

β+ = β− = ±
√

2+s+1/s
2

10 odd 0 0 α−α+ = s+1
2 β+β− = s+1

2s 0

α+β− = ±i (s
1/2+s−1/2)

2

odd 0 ± i√
2

α− = α+ = ± 1√
2
β+ = β− = 0 s = −1 0

11 arb. 0 ± 1√
2

α− = α+ = β+ = β− = 0 s = −1 0

12 arb. ± 1√
2
± 1√

2
α− = α+ = β+ = β− = 0 s = 1 0

arb. ∓ i√
2
± i√

2
α− = α+ = 0 β+ = β− = ±

√
2 s = 1 0

13 arb. ∓ i√
2
± i√

2
α− = α+ = 0 β+ = β− = 1 s = −1 0

14 even ± i√
2s
±i
√
s
2 α− = α+ =

√
1+s
s
β+ = β− =

√
1 + s min(sin π

2L ,
1
2(s

1/2 + s−1/2))

14 odd ± 1√
2
∓ 1√

2
α− = α+ = β+ = β− = 0 s = −1 0

15 even ± 1√
2
± 1√

2
α− = α+ = β+ = β− = 0 s = −1 0

15 odd ∓ i√
2s
±i
√
s
2 α− = α+ =

√
1+s
s
β+ = β− =

√
1 + s min(sin π

2L ,
1
2(s

1/2 + s−1/2))

16 arb. ± 1√
2s
±
√
s
2 α− = α+ = β+ = β− = 0 0

arb. ± i√
2
∓ i√

2
α− = α+ = 0 β+ = β− = ±(

√
s
2 + 1√

2s
) 0
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such as reflecting the Hamiltonian in the middle of the chain or applying a transformation of
the form given by equation (4.3) to the Hamiltonian, are not explicitly listed.

Table 3 should be understood as follows. Let us first comment on the choice of the signs
in the cases where we give two alternative signs for the boundary parameters. The signs in the
third and fourth columns can always be chosen independently of each other. However, in the
upper half of the table, the signs ofα− andα+ cannot be chosen independently (see e.g. case
2 or 4) whereas in the lower part of the table, they can be chosen independently (e.g. in cases
9 even and 9 odd as indicated by the conditionα+β− = ±1).

Now we turn to the one-parameter families depending on the parameters. Here, the
conditions (a)–(c) often lead to restrictions for the value ofs which are indicated in the fifth
column. The choice ofα−, α+, β− andβ+ given in the fourth column determinesα−β+ +α+β−.
In most of the cases from table 1 the product of all values of3k is positive (or zero), and
consequently the sign ofα−β+ + α+β− multiplied by(−1)L yields the sign ofη. If η < 0, the
ground-state energy ofH is given byE0(Hlong) + 23lowest whereE0(Hlong) can be taken from
table 2. Ifη > 0, the ground-state energy ofH is given byE0(H) = E0(Hlong). However,
there are some cases where eigenvalues with vanishing real part but non-vanishing imaginary
part appear in the spectrum ofHlong. This happens, for example, in case 10 for negative values
of s and may in general happen in cases 9, 10, 14 and 15. In these cases, the sign of the product
of all eigenvalues is not uniquely defined. Here, it is impossible to decide which of the two
vectors|v+〉 andblowest|v−〉 corresponds to the ground state ofH .

In some of the cases, we always findα−β+ + α+β− = 0. Here, an additional zero mode
appears in the spectrum ofHlong as already mentioned at the end of section 3. Therefore, the
energies of|v+〉 andbn|v−〉, wherebn is the creation operator for the additional fermion with
energy zero, are the same and the ground-state energy ofH is again given byE0(Hlong). This
is also indicated in table 3 in the last column.

13. Guide

In this paper, we have explained how to diagonalize theXX-quantum spin chain of length
L with diagonal and non-diagonal boundary terms defined in equation (1.1). Here we give a
resuḿe of our method which the reader may use as a guide on how to use our results. This
guide should be seen as a user-friendly cooking recipe. It has two parts, the first deals with the
spectrum, the second with the eigenvectors. As one will notice, the guide does not follow the
sections in a chronological way.

In order to find the eigenvalues and eigenvectors ofH we start by considering a different
HamiltonianHlong which is obtained fromH by appending two additional sites 0 andL + 1
(see (1.4)) so that the expression forHlong is bilinear in Majorana (Clifford) operators, see
equation (2.4).Hlong can be diagonalized in terms of free fermions, fixing the representation
we are working in. The spectrum and the eigenvectors ofH in the Fock representation can be
retrieved from those found forHlong by a projection method described below.

13.1. Eigenvalues ofHlong

The diagonalization ofHlong is described in section 2. The spectrum is given in terms of
L + 2 single fermionic energies 23n (see (2.16)). The values of3n can be obtained from a
(2L + 4) × (2L + 4) matrixM (equation (2.11)). SinceM = −M t , the 2L + 4 eigenvalues
of this matrix appear in pairs±3n. The necessaryL + 2 eigenvalues are taken by convention
as the values with positive real part. As explained in the text, zero is always an eigenvalue of
M. This corresponds to a fermionic zero mode. As long as we considerHlong, the zero mode
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30 = 0 appears in the spectrum and the ground state is at least twofold degenerate. As we are
going to see, the zero mode does not appear in the spectrum ofH ; therefore, we are going to
call it the spurious zero mode. However, the eigenvectors ofM corresponding to the spurious
zero mode will be needed in the derivation of the eigenvectors ofH .

The eigenvalues ofM can be expressed using equation (3.9) in terms of the zeros of a
complex polynomial of degree 2L + 4 (see (4.1)). Note that the variablex in equation (3.9)
is related to the variablez in equation (4.1) viaz = x2. To find the zeros of the polynomial
analytically, we have looked in a systematic way for factorizations of the polynomial into
cyclotomic polynomials. We have determined all possible factorizations up to five factors
and found some examples for factorizations in six factors. These results are listed in table 1
(the parametersA,B,C,D andE appearing in table 1 are defined by equation (4.2) in terms
of the boundary parameters of the Hamiltonian). For the cases where we did not find any
factorizations of the polynomial, the zeros of the polynomial and therewith the fermionic
energies can still be calculated numerically. Since the polynomial has degree 2L + 4, this is
much easier than a straightforward numerical diagonalization of the Hamiltonian which has
dimension 2L × 2L.

By studying the solutions of the polynomial equation (4.1), we find specialL-independent
solutions in some cases. They correspond to boundary bound states as will be shown in [23].

The ground-state energy ofHlong (which is by convention the energy with the smallest
real part) is obtained in equation (2.16) by subtracting the Fermi sea. In table 2 we listed the
corresponding expressions for the ground-state energies ofHlong (which are at least twofold
degenerate) for the cases where the polynomial factorizes into cyclotomic polynomials. Some
properties of the ground-state energies will be discussed in section 14.

In section 6, we give the expressions for the spectrum ofM in some of the ‘exactly
solvable’ cases. A list of the ground-state energies ofHlong for all ‘exactly solvable’ cases
can be found in section 7. Section 8 contains the spectrum ofM and the ground-state energy
of one example of a Hamiltonian with asymmetric bulk terms which can be treated with the
results developed in this paper by using the similarity transformation between the Hamiltonian
given by equation (1.1) and that given by (1.2). This transformation changes the boundary
parameters according to equation (1.3).

13.2. Eigenvalues and ground-state energy ofH

Finding the eigenvalues of the original HamiltonianH is more involved. As shown in section 9,
to find the spectrumH we have to look at an even or an odd number of fermionic excitations with
respect to the lowest energy ofHlong. We disregard the spurious zero mode in the calculation of
the number of fermionic excitations. Whether one has an even or an odd number of fermionic
excitations in the spectrum ofH depends on the value of a parameterη defined by equation (9.5)
which is either +1 or−1 (see section 9 for details). We will explain the way it is computed
later. If η = +1, the spectrum ofH consists of an even number of fermionic excitations with
respect to the ground-state energy ofHlong and the ground-state energy ofH is the same as
that ofHlong. If η = −1, the eigenvalues ofH are given by an odd number of fermionic
excitations and the ground-state energy ofH is the sum of the ground-state energy ofHlong

and the fermionic energy with the smallest real part which we call 23lowest.
If on top of the spurious zero mode another fermionic excitation is zero, the ground-

state energy ofH is non-degenerate and identical to the ground-state energy ofHlong and the
spectrum ofH is given by all even and odd combinations of fermionic excitations. If a second
fermionic excitation is zero, the whole spectrum ofH is twofold degenerate. So in these cases
one does not need to calculate the value ofη.
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At this point we restrict our discussion to the cases where we have derived explicit formulae
for the parameterη:

(a)Hlong (and therewithH ) is Hermitian;
(b)Hlong has noσ z boundary terms (αz = 0= βz);
(c) α− = α+ andβ+ = β−.

For the other cases this guide is not sufficient since they are much more complicated and we
have not obtained simple formulae for the parameterη.

In case (a),η is given by equation (11.13). Notice that only two boundary parameters
appear in the expression forη. In cases (b) and (c), the expression forη is given by
equation (11.11) in terms of the parameters of the non-diagonal boundary terms and the
eigenvalues ofM.

13.2.1. Analytical results for the ground-state energy ofH . If the Hamiltonian additionally
belongs to one of the ‘factorizable’ cases, the ground-state energy ofH can be calculated
analytically. These cases are listed in table 3. To calculate the ground-state energy ofH for a
particular choice of boundary parameters given in the third and fourth column of table 3, one
has to proceed as follows. First, one checks the value of 23lowest given in the last column.
If 23lowest = 0, the ground-state energy ofH is identical to that ofHlong (which is listed
in table 2). In the cases where 23lowest 6= 0, one has to know the value ofη to obtain the
ground-state energy ofH . This value is obtained by using formula (11.11) in cases (b) and
(c) (the values of3n are given by the zeros of the factorized polynomials listed in table 1) and
formula (11.13) in case (a).

The fermionic energy with the smallest real part 23lowest which has to be added to the
ground-state energy ofHlong if η = −1 is listed in the last column of table 3. Ifη = 1 the
ground-state energy ofH can be taken directly from table 2.

Many of the exactly solvable cases depend on an arbitrary free parameters (see tables 1
and 3). In table 3, theses-dependent cases can be separated into two categories. For cases
11–13 and for some choices of the parameters in cases 9, 10, 14 and 15, the conditions (a)–(c)
fix the parameters to some particular value which can be found in column 5 of table 3. For
cases 9, 10, 14–16 there are also possible choices of the boundary parameters where this is
not the case. In examples 9, 10, 14 and 15 it may happen that one cannot make a definite
statement about the value ofη, if s is chosen in such a way that thes-dependent eigenvalue of
M has a vanishing real part, but a non-vanishing imaginary part. The reason lies in the fact
that our convention to choose the fermionic energies as those with positive real part becomes
ambiguous in this case.

13.2.2. Numerical calculation of the ground-state energy ofH . Even if the Hamiltonian one
is interested in does not belong to one of the factorizable cases, but fulfils conditions (a), (b)
or (c), one can still use formulae (11.13) and (11.11) to decide what the ground state ofH is.
If H is Hermitian,η can be read off directly from (11.13); in cases (b) and (c) one additionally
needs the spectrum ofM to compute the value ofη (see (11.11)). The eigenvalues ofM can
be calculated numerically by solving the polynomial equation (4.1) or by diagonalizingM

numerically. Inserting them into equation (2.16) yields the ground-state energy ofHlong.

13.3. Eigenvectors ofHlong,H andM

Up to now we have described how to find the eigenvalues and the ground-state energies for
Hlong and forH . Let us now turn to the eigenvectors.



TheXX-model with boundaries: I 225

The eigenvectors ofHlong are given in a fermionic Fock representation (compare
equation (2.16)). The eigenvectors ofH are given in the same Fock representation; however,
they all lie either in the even or the odd part of the Fock space where we again do not count
the spurious zero mode. If the value ofη is +1, the ground state ofH corresponds to|v+〉 (see
equation (9.3)) and all excited states are of the form given in equation (9.6). Ifη = −1, the
ground state ofH corresponds toblowest|v−〉 where|v−〉 is also defined in equation (9.3) and
blowest is the creation operator corresponding to the fermion energy with the smallest real part.
For the exactly solvable cases it can be read off table 3. The excited states are described by
equation (9.7).

In section 10, we describe how to calculate expectation values ofσ -operators. For
this calculation, one can either transform the expression for the eigenstates ofH in the
spin representation or, alternatively, one can transform the expression for theσ -operators
into the fermionic (Fock) representation. We have chosen the second possibility. The
transformation from theσ -operators to the fermionic operatorsak and bk is given in
equations (2.3) and (10.3) where the(φ±k )

µ

j are the components of the eigenvectors of
M defined by (2.13) (where we use the notation fixed by (2.9)). Thus, to use this
transformation one needs to know the eigenvectors ofM. We will now describe how to
find them analytically in the cases where the zeros of the polynomial are known, following
the method described in section 3. One first solves equation (3.17) to expressϕ1 as a
function of ϕ̄1, where the coefficients�ij with i, j = 1, 2 are given by equations (3.18)–
(3.21). If x 6= i, the solution forϕ1 is inserted in equations (3.11)–(3.14), and the
results for the coefficientsa, b, f and g used in equation (3.8) forx 6= 1 respectively
(3.23) for x = 1 yield expressions forϕj and ϕ̄j . The entries of the eigenvectorφ±

are then given by (3.24) in terms ofϕj and ϕ̄j . In this notation, they still depend on the
variablex.

The values ofx are obtained as solutions of the polynomial equation (4.1). The polynomial
is given in the variablez = x2. The eigenvectors for the eigenvalues3n with positive real part
andxn 6= i are obtained by choosing a square rootxn = √zn for each zerozn 6= ±1 of the
polynomial (such that the real part ofxn is positive). Observe that due to the quadratic relation
between3n andxn (equation (3.9)) the valuesxn and 1/xn lead to the same eigenvalue and to
the same eigenvector.

For the eigenvectors corresponding to the eigenvalues3n with negative real part one takes
xn = −√zn. The last free parameter̄ϕ1 is fixed by the normalization conditions given by
equation (2.20). Equations (2.20) and (2.21) are equivalent to the anticommutation relations
for the fermionic operators.

Forxn = i the equations (3.3)–(3.7) have to be solved in a different way using the ansatz
given by (3.8) forϕj andϕ̄j . Details of this calculation as well as a derivation of the conditions
for the appearance of additional zero modes on top of the spurious zero mode in the spectrum
of Hlong can be found in the appendix.

13.4. One- and two-point functions of theσx-operators

If no σ z-boundary terms are present in the Hamiltonian or if the conditionα− = α+

and β+ = β− is met, we obtained formulae for the one- and two-point functions of
the σxj -operator for both chainsH and Hlong. For Hlong, we considered the ground
states given by the eigenstates ofσx0 and σxL+1. Remember thatHlong has a twofold
degenerate ground state due to the spurious zero mode. In the fermionic language, this
corresponds to a vacuum,|vac〉, and an excited zero mode,|0〉. Due to the symmetry
that Hlong commutes withσx0 and σxL+1 we can pick out the two ground states|v±〉 =
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|vac〉 ± |0〉 (see (9.3)) as eigenstates ofσx0 and σxL+1. As far asH is concerned, its
ground state is given either by|v+〉 or by blowest|v−〉, whereblowest is the creation operator
of the fermion corresponding to the energy with the smallest real part as explained
earlier.

The one-point functions of theσxj -operator are non-trivial due to the presence of the non-
diagonal boundary terms. Without them, they would be zero which is a well known fact from
theXX-chain.

The one- and two-point functions are, up to a factor, Pfaffians (see (10.1), (10.2) and
(10.5)) of the matrixA given by equation (10.6). If noσ z-boundary terms are present, we
can further reduce this expression to a determinant as given by equation (10.11). Ifα− = α+

andβ+ = β−, the determinant is given by (10.14). These simplifications are possible because
some of the so-called basic contractions of pairs of the form given by (10.8) vanish due to the
relations (2.40) and (2.42) obtained in section 2. To determine the ground state ofH , we use
the results of this calculation to determine the magnetization〈v+|σxL+1|v+〉 in section 11 to find
the value of the parameterη as given by (11.11).

Our calculation with slight modifications also applies to expectation values of theσxj -
operator with respect to excited states. This is explained in the last paragraph of section 10.

13.5. List of the results which are going to be used in the following two papers

Here we give a list of results that we will use in the following two papers.
• Second paper [23]. In order to calculate expectation values of theσ zj -operator and the

σxj -operator for arbitrary positionj and lattice lengthL, we need:
(i) the transformation from theσ -operators to the fermionic operators ((2.3) and (10.3));
(ii) the eigenvectors ofM (see section 3) and the roots of the polynomial (4.1);
(iii) the expressions for the eigenstates ofH in the Fock representation ((9.6), (9.7) and

(9.3)) and the value of the parameterη defined by equation (9.5);
(iv) the formulae for the one- and two-point correlation functions ofσxj derived in

section 10.
• Third paper [24].
(i) For the calculation of the excitation spectrum ofH in the limit of largeL we need the

polynomial equation (4.1) and the projection mechanism (see section 9).
(ii) For the expressions of the ground-state energies in the exactly solvable cases in the

limit of largeL we need the results of tables 2 and 3.
(iii) For the construction of the magnetic charge operator, we need the eigenvectors ofM

(and therewith the roots of the polynomial, see earlier).

14. Discussion

14.1. Observations on the expressions for the ground-state energies

Up to now we have described how to find the eigenvalues, the ground-state energies and the
eigenvectors forHlong (equation (1.4)) and forH (equation (1.1)). We now turn to the discussion
of the results of our analytical calculations for the cases where the polynomial (equation (4.1))
can be factorized into cyclotomic polynomials. The expressions of the ground-state energies
of Hlong and ofH are given in terms of trigonometric functions only (see tables 2 and 3). It
is remarkable that they appear in spite of non-diagonal boundary terms in the Hamiltonians.
This reflects the integrability of the model.
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Furthermore, notice that for the one-parameter families of exact solutions corresponding
to cases 10–16 from table 2 (where the free parameter is calleds) the ground-state energy has
anL-independent (buts-dependent) term which appears additively to theL-dependent part of
the ground-state energy. We will show in [23] that theseL-independent contributions to the
ground-state energy ofH are related to boundary bound states.

In some special situations, which only appear for non-Hermitian Hamiltonians, the
expressions for the ground-state energy ofH exhibit a rather peculiar behaviour with respect
to variations ofL. Namely, considering one of the cases 10, 14 and 15 and choosing the
parameters in such a way thatη = −1, one observes that forL less than a limiting
lengthLlimit (which depends ons) the fermionic energy 23lowest (which has to be added
to the ground-state energy ofHlong to obtain the ground-state energy ofH ) is given by
twice theL-independent expression that appears in the ground-state energy ofHlong, but
with opposite sign (see table 3). Therefore, this term appears with different sign in the
expression for the ground-state energy ofH than in the expression for the ground-state
energy ofHlong. However, if L is larger thanLlimit , a level crossing in the fermionic
spectrum appears and anotherL-dependent fermionic energy becomes smaller than theL-
independent energy from before. Then thisL-dependent fermionic energy has to be added to
the ground state ofHlong instead of theL-independent term from before, and theL-independent
part no longer switches its sign when going from the ground-state energy ofHlong to that
of H .

Now we discuss the degeneracies in the spectrum ofH . Degeneracies may appear due to
doubly degenerate fermionic energies. In the cases where the polynomial can be factorized into
cyclotomic polynomials, twofold degenerate fermionic energies can be identified by quadratic
factors appearing in the factorized form of the polynomial (see table 1). Notice that this
observation does not apply to the quadratic factors of the form(1− z)2 since the polynomial
p(z) given by equation (4.1) has to be divided by this term. In the case where the spectrum of
H consists of an odd number of fermionic excitations, twofold degenerate fermionic energies
also lead to a twofold degenerate ground state. The degeneracies in the spectrum ofH are also
reflected in the partition functions in [24].

14.2. Open questions

Some questions could not be clarified within the framework of this paper.
(a) It is not clear whether table 1 from section 5 shows all possible cases where the

polynomial factorizes into six or more factors given by cyclotomic polynomials. Perhaps it is
also possible to find different factorizations of the polynomial for other boundary parameters
which also allow us to compute all zeros analytically.

(b) From table 3 one sees that two Hamiltonians may have different boundary terms and
still have the same spectrum (given by the zeros of the same polynomial), for example in case
2 where the HamiltonianH with α−α+ = 1 andβ+ = β− = αz = βz = 0 has the same
spectrum as the Hamiltonian with boundary parametersβz = 1√

2
, αz = 0, α− = 1√

2
eiφ, α+ =

1√
2
e−iφ, β+ = β− = 0. This fact gives rise to unknown similarity transformations which

remain to be made explicit.
(c) For the exactly solvable one-parameter families 10, 14 and 15 with free parameters we

observed a surprising behaviour of the expression of the ground-state energy ofH in the case
where the parameterη = −1. Namely, by increasing the lattice lengthL and reaching a certain
valueLlimit which is given in terms ofs, theL-independent contribution to the ground-state
energy suddenly switches its sign. The physical origin of this phenomenon is not clear.
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Appendix. Appearance of fermionic zero modes in the spectrum ofHlong

In this appendix, we show how to find the eigenvectors of the matrixM corresponding to the
eigenvalue zero. This procedure will provide conditions for the boundary parameters which
are equivalent to the existence of additional zero modes on top of the spurious zero mode.
These conditions are already mentioned without proof in section 3.

One might guess that the conditions on the boundary parameters we obtain by constructing
the eigenvectors are already contained in the polynomial given by equation (4.1). We will see
that this is indeed the case, if we only consider Hermitian boundary terms. In the general,
non-Hermitian case this is not true. The polynomial might have more zeros corresponding to
eigenvaluesλ = 0 of the matrixM than the number of eigenvectors that can be constructed.
Therefore, in this case,M is not diagonalizable.

We are first going to deal with the explicit construction of the eigenvectors. Afterwards
we will consider the polynomial equation (4.1).

A.1. Construction of eigenvectors

According to equation (3.9),λ = 0 corresponds tox = ±i. So we solve the boundary equations
(3.4)–(3.7) using the solution of the bulk equations (3.3) given by (3.8) withx = i, i.e.

ϕj = aij + bi−j ϕ̄j = g(−i)j + f (−i)−j (A.1)

where 0< j < L + 1. This can now be used to rewrite the boundary equations in terms of
a, b, g, f andϕ0, ϕ̄0, ϕL+1, ϕ̄L+1. Introducing the new parameters

r±α = ( 1√
2
± iαz) r±β = ( 1√

2
± iβz) (A.2)

we obtain from the left boundary

ϕ0 = ϕ̄0 (A.3)

α−(a − b) = α+(f − g) (A.4)

r+
αa + r+

βb − α+ϕ0 = 0 (A.5)

r+
βg + r+

αf − α−ϕ0 = 0. (A.6)

The equations from the right boundary give

(−1)Lr−β a − r+
βb + iL+1β+ϕL+1 = 0 (A.7)

r+
βg − (−1)Lr−β f + iL+1β−ϕL+1 = 0 (A.8)

β+(g + (−1)Lf ) = −β−(b + (−1)La) (A.9)

ϕL+1 = −ϕ̄L+1. (A.10)

Sinceϕ̄0 andϕ̄L+1 appear only in equations (A.3) and (A.10), we have to solve the homogeneous
system of six linear equations given by (A.4)–(A.9) for the six unknownsa, b, f, g, ϕ0, ϕL+1.
The vector components̄ϕ0 and ϕ̄L+1 can then be directly read off from equation (A.3)
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respectively (A.10). To have non-trivial solutions for the 6× 6 system of equations (A.4)–
(A.9) the determinant of the corresponding 6× 6 matrix has to vanish. This is equivalent to a
condition on the boundary parametersα+, α−, β+, β−, i.e.

α+β− + α−β+ = 0. (A.11)

At this point, it is not obvious how many solutions of the equations (A.4)–(A.9) may exist.
Thus we are going to solve them explicitly. In order to do this, we will treat (A.5)–(A.8)
and (A.4) and (A.9) separately. We first solve (A.5)–(A.8) fora, b, f, g and then check for
consistency with (A.4) and (A.9).

Equations (A.5) and (A.7) and (A.6) and (A.8) can be rewritten as

Rab

(
a

b

)
=
(

α+ϕ0

−iL+1β+ϕL+1

)
Rgf

(
g

f

)
=
(

α−ϕ0

−iL+1β−ϕL+1

)
(A.12)

where the 2× 2 matricesRab andRgf are given by

Rab =
(

r+
α r+

β

(−1)Lr−β −r+
β

)
Rgf =

(
r+
β r+

α

r+
β (−1)L+1r−β

)
. (A.13)

The determinants ofRab andRgf have the same values and are given in terms ofαz, βz by

detRab = detRgf =
{

2βzαz − 1 forL even

−
√

2i(αz + βz) for L odd.
(A.14)

Once we know the general solution of equation (A.12), we only have to verify which specific
solutions simultaneously solve (A.4) and (A.9). Solving equation (A.12) one has to distinguish
two cases: (1) detRab 6= 0, (2) detRab = 0. Let us first deal with case (1).

If detRab 6= 0 the matricesRab andRgf can be inverted in order to solve (A.12). Doing
this we obtain

a = −1

detRab
(α+r

+
βϕ0 − iL+1β+r

+
βϕL+1) (A.15)

b = −1

detRab
((−1)Lα+r

−
β ϕ0 + iL+1β+r

+
αϕL+1) (A.16)

g = −1

detRab
((−1)Lα−r−β ϕ0 − iL+1β−r+

αϕL+1) (A.17)

f = −1

detRab
(α−r+

βϕ0 + iL+1β−r+
βϕL+1). (A.18)

Substituting this into equation (A.4) gives

(α+β− + α−β+)ϕL+1 = 0 (A.19)

whereas (A.9) leads to

(α+β− + α−β+)ϕ0 = 0. (A.20)

Thus, if equation (A.11) is satisfied and if detRab 6= 0, we obtain two eigenvectors ofM
corresponding to the eigenvalueλ = 0 on top of the spurious zero mode becauseϕ0 andϕL+1

can be chosen independently of each other.
Let us now turn to case (2), i.e. detRab = 0. Because this condition gives different

conditions on the non-diagonal boundary terms forLeven andLodd, respectively (see (A.14)),
we discuss these cases separately.

We will first turn to the case whereL is odd. Here we haveαz = −βz which can be read
off from equation (A.14). Using this in (A.13), we can rewrite (A.12) as follows:

α+ϕ0 = iL+1β+ϕL+1 α−ϕ0 = −iL+1β−ϕL+1 (A.21)

α+ϕ0 = r−β a + r+
βb α−ϕ0 = r−β f + r+

βg. (A.22)
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ForL even we have, according to equation (A.14),αz = 1/2βz. Using this equality, (A.12)
reads √

2βzα+ϕ0 = iLβ+ϕL+1

√
2βzα−ϕ0 = −iLβ−ϕL+1 (A.23)

i
√

2βzα+ϕ0 = r+
βb − r−β a i

√
2βzα−ϕ0 = r+

βg − r−β f. (A.24)

Note that at least one of the parametersr−β , r
+
β is different from zero. Thus, equations (A.22)

and (A.24) can be solved either fora andf or for b andg, respectively. Note also that,
due to (A.21) and (A.23),ϕ0 andϕL+1 are no longer independent of each other, if one of the
parametersα+, α−, β+, β− is different from zero in contrast to case (1).

If all of the parametersα+, α−, β+, β− are vanishing, equation (A.21) respectively (A.23)
are satisfied automatically. The same holds for equations (A.4) and (A.9). Thus we simply
have to solve equations (A.22) and (A.24) yielding

a = (−1)L
r+
β

r−β
b f = (−1)L

r+
β

r−β
g for r−β 6= 0 (A.25)

b = (−1)L
r−β
r+
β

a g = (−1)L
r−β
r+
β

f for r+
β 6= 0. (A.26)

Since, on the one hand, the parametersa andf or b andg, respectively, and, on the other,
the two vector componentsϕ0, ϕL+1 can be chosen independently we obtain a set of four
eigenvectors corresponding to the eigenvalueλ = 0 on top of the spurious zero mode.

If one of the parametersα+, α−, β+, β− is different from zero we may solve
equations (A.22) and (A.24) fora and f or b and g, respectively, and use the result in
equation (A.4) to obtain

α−b = α+g for r−β 6= 0 (A.27)

α−a = α+f for r+
β 6= 0. (A.28)

Additionally using equation (A.21) respectively (A.23), we obtain from equation (A.9)

β+g = −β−b for r−β 6= 0 (A.29)

β+f = −β−a for r+
β 6= 0. (A.30)

Due to condition (A.11), it is always possible to solve equations (A.27)–(A.30) and (A.21)
respectively (A.23) by leaving two variables undetermined. The remaining four unknowns can
then be given in terms of these two. This allows the construction of two further eigenvectors
corresponding to the eigenvalueλ = 0.

For instance, let us assumeα+ 6= 0, r−β 6= 0 andL odd. Equation (A.21) is then solved
by ϕ0 = iL+1(β+/α+)ϕL+1, whereas (A.27) and (A.29) are solved byg = (α−/α+)b. The
parametersa andf are then fixed by equation (A.22). Thusa, f, g, ϕ0 are given in terms of
b andϕL+1, which can be chosen independently.

Let us briefly summarize the results of this section. We have looked for eigenvectors
corresponding to the eigenvalue zero. At this point we want to remind the reader that there
always exist at least two eigenvectors corresponding to the eigenvalue zero, namely those which
are related to the spurious zero mode. We found exactly two further eigenvectors corresponding
to the eigenvalue zero ofM if and only if one of the two following conditions is satisfied:

(i) α+β− + β+α− = 0 andβz 6= 1/2αz for L even respectivelyαz 6= −βz for L odd;
(ii) α+β− + β+α− = 0 and at least one of the parametersα±, β± is different from zero.
There exist four further eigenvectors corresponding to the eigenvalue zero ofM if and

only if
(i) α± = β± = 0 andβz = 1/2αz for L even respectivelyαz = −βz for L odd.
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There are no other possibilities of having further eigenvectors corresponding to the eigenvalue
zero.

A.2. Zeros of the polynomial atz = −1

In this subsection we consider the polynomial equation (4.1) in order to check whether the
matrixM may have more eigenvaluesλ = 0 than the number of eigenvectors that can be
constructed. Since in generalM is non-Hermitian, this may indeed be the case. For Hermitian
M, i.e. Hermitian boundary conditions, we will recover the conditions on the boundary terms
which we already obtained in the previous section.

Since the polynomial equation is given in terms of the variablez = x2, an additional
eigenvalueλ = 0 on top of the spurious zero mode corresponds to a root of the polynomial at
z = −1 (see (3.9)). The necessary condition to have at least one eigenvalueλ = 0 on top of
the spurious zero mode therefore translates to

q(−1) = 0

⇔ D = 1 +A +B + 2C (A.31)

⇔ α−β+ + α+β− = 0 (A.32)

where the parametersA,B,C,D andE are defined by equations (4.2). These zeros will
always appear in pairs since withz also 1/z is a zero ofq(z). In order to find a condition for
the existence of a root atz = −1 with higher multiplicity than two, we have to consider the
second derivative ofq(z). Using equation (A.31) we obtain for evenL

∂2
z p(z)|z=−1 = 0

⇔ 2(E − 1)2 + (3 + 2A +B + 2C)L− CL2 = 0 (A.33)

whereas for oddL we get

1− C − B + 4E + (3 + 2A +B + 2C)L− CL2 = 0. (A.34)

Let us now consider equations (A.32)–(A.34) for the case of Hermitian boundaries. Then
equation (A.32) implies that at least one of the parametersα+ = α∗− or β+ = β∗− is equal
to zero. Without loss of generality, we may assume thatα+ = 0. This implies immediately
C = 0 and 3 + 2A +B = 2|β+|2(1 + 2α2

z ). Using equation (A.33) we obtain forL even

2|β+|2(1 + 2α2
z ) = −

2(2αzβz − 1)2

L
. (A.35)

Since this equality can only be valid if the right-hand side and the left-hand side vanish
simultaneously, we conclude that in the Hermitian case further zeros atz = −1 only exist if

α+ = β+ = 0 αz = 1

2βz
. (A.36)

From equation (A.34) we get forL odd

2|β+|2(1 + 2α2
z ) = −

4(βz + αz)2

L
(A.37)

which can only be satisfied if

α+ = β+ = 0 αz = −βz. (A.38)

Further conditions for the existence of more than four zeros atz = −1 can be derived in the
same manner as equation (A.33) and equation (A.34), respectively. Solving (A.33) and (A.34)
for A and calculating the fourth derivative ofp(z) at z = −1 gives the conditions

4− 8E +E2 + 12L(1− E2) +L2(2E2 − 3B − 4C + 8E + 5) +L4C = 0 (A.39)
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for L even and

C + 8E +B + 6E2 + 5 + 12L(1− E2) +L2(7− 2C − 8E − B + 6E2) +L4C = 0

(A.40)

for L odd, respectively. Using equations (A.36) in (A.39) gives(√
2βz +

1√
2βz

)2

= 0 (A.41)

whereas substitution of (A.38) into (A.40) yields

−2β2
z =

1 +L

L− 1
. (A.42)

Since neither equation (A.41) nor (A.42) can be satisfied by anyβz ∈ R we conclude that in
the Hermitian case we have at most four zeros atz = −1. It is no surprise that for Hermitian
boundaries the conditions on the boundary parameters obtained in this subsection are equivalent
to those of the previous subsection. However, ifM is non-Hermitian, the conditions derived
in this subsection have more solutions than those of the previous section. Therefore, it may
happen that the polynomial has more zeros corresponding to an eigenvalueλ = 0 than the
number of eigenvectors that can be constructed. This implies thatM is non-diagonalizable for
certain choices of boundary terms.
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